
Submitted to:
WPTE 2021

© S. Zhang and N. Nishida
This work is licensed under the
Creative Commons Attribution License.

On Transforming Inductive Definition Sets into Term Rewrite
Systems*

Shujun Zhang
Nagoya University

Nagoya, Japan
shujun@trs.css.i.nagoya-u.ac.jp

Naoki Nishida
Nagoya University

Nagoya, Japan
nishida@i.nagoya-u.ac.jp

In this paper, we transform an inductive definition set—a set of productions for inductive predicates—
into a term rewrite system (TRS, for short) such that a quantifier-free sequent over the first-order logic
with the inductive definition set is valid if and only if its corresponding equation is an inductive theo-
rem of the TRS. The resulting TRS is composed of three parts: Rewrite rules for logical connectives
and a binary symbol for sequents; rewrite rules for productions; rewrite rules for the co-patterns of
the second part. For correctness of the resulting TRS, we assume a certain property of the inductive
definition set, which is a sufficient condition for ground termination and ground confluence of the
resulting TRS. The transformation aims at comparing cyclic proof systems and rewriting induction.

1 Introduction

Inductive theorem proving is well investigated in functional programming and term rewriting. In the field
of term rewriting, rewriting induction [10] (RI, for short) is one of the most powerful principles to prove
equations inductive theorems. An equation s≈ t is called an inductive theorem of a given (many-sorted)
term rewrite system (TRS, for short) if the equation is inductively valid under the reduction of the TRS,
i.e., all of its ground instances are theorems of the TRS. RI has been extended to several kinds of rewrite
systems, e.g., logically constrained term rewrite systems [7] (LCTRS, for short) that are models of not
only functional but also imperative programs [5].

A cyclic proof system [2] is a proof system in sequent-calculus style for first-order logics with induc-
tive predicates, where inductive predicates are defined by productions of the form A1 ... An

A . In contrast
to structural proofs which are (possibly infinite) derivation trees, cyclic proofs are finite derivation trees
with back-links from bud nodes to companions. Such back-links correspond to the application of induc-
tion hypotheses, making trees finite. For the last decade, cyclic proof systems are well investigated for
several logics, e.g., separation logic [11].

RI and cyclic proof systems have similar inference rules such as case analysis, the application of rules
in given systems, and generalization. RI is based on induction by means of the application of rewrite
rules representing induction hypotheses; the measure of the induction is the terminating reduction of the
combined system of a given system and the induction hypotheses. Cyclic proofs have bud nodes that
are connected with their companion, and the back-link corresponding to induction; the measure of the
induction is that every (possibly infinite) path from the root passes infinitely many times through the
application of the case rule which is based on productions for inductive predicates.

From the above observation, RI and cyclic proof systems seem very similar and we are interested
in differences between RI and cyclic proof systems, while the former proves equations to be inductive
theorems and the latter proves validity of sequents. If RI and cyclic proof systems have the same proof

*This work was partially supported by JSPS KAKENHI Grant Number JP18K11160.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 On Transforming Inductive Definition Sets into Term Rewrite Systems

power, then it would be easy to apply several developed techniques for one to the other; otherwise, we
must be able to know something new for inductive theorem proving, e.g., one of them could be improved
by the advantage of the other. For this reason, it is worth comparing RI and cyclic proof systems, and the
comparison is our ultimate goal. For the comparison, we have to consider the common setting: Inductive
definition sets, sets of productions for inductive predicates, must be represented by rewrite systems, and
formulas by terms.

In this paper, we transform an inductive definition set Φ into a TRS R such that a quantifier-free
sequent Γ ` ∆ is valid w.r.t. Φ (i.e., Φ |= (

∧
F∈Γ F ⇒

∨
F ′∈∆ F ′)) if and only if its corresponding equation

seq(Γ̃, ∆̂) ≈ true is an inductive theorem of R.1 Given an inductive definition set Φ, the resulting TRS
R is composed of three parts:

• a ground TRSRPL for ` and logical connectives (∨, ∧, and ¬);

• a TRSRΦ obtained from Φ by transforming each production in Φ into a rewrite rule;

• rewrite rules for the co-patterns [8] ofRΦ.
Note thatRPL is irrelevant to Φ. We denote byRco

Φ
the union ofRΦ and the set of rules for co-patterns,

and Rco
Φ
∪RPL by R which is the TRS we generate. The co-patterns of left-linear TRSs can be enumer-

ated [8], and thus,RΦ is expected to be left-linear. For this reason, we assume that Φ is conclusion-linear,
i.e., the conclusions of productions in Φ are linear. In addition, we assume that Φ is consistent, i.e., there
is no closed formula F such that Φ |= F and Φ 6|= F . This is not restrictive because we are interested in
consistent classes.

For the correctness of the resulting TRS R, we first show that R is a quasi-reductive constructor
TRS, and ifR is ground confluent, then both of the following hold:

• a ground formula holds (i.e., Φ |= F) if and only if F →∗R true, and

• a ground formula does not hold (i.e., Φ 6|= F) if and only if F →∗R false.
Then, we show that ifR is ground terminating, then

• R is ground confluent, and

• a quantifier-free sequent Γ`∆ is valid w.r.t. Φ if and only if its corresponding equation seq(Γ̃, ∆̂)≈
true is an inductive theorem ofR.

Note that we assume ground termination of R as a sufficient condition for ground confluence of R.
Finally, we show that the TRS {A→ Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n} is GSC-terminating if and only if
R is so, where a TRS R′ is said to be GSC-terminating if R′ is terminating and its termination can
be proved by the generalized subterm criterion [13, Theorem 33]; in other words, GSC-termination of
{A→ Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n} is a sufficient condition for termination of the resulting TRS R. In
summary, if Φ is conclusion-linear and consistent, and the TRS {A→ Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n} is
GSC-terminating, then the resulting TRSR has the expected property.

This paper is organized as follows. In Section 2, we briefly recall many-sorted term rewriting and
first-order logics with inductive predicates. In Section 3, we show a transformation of an inductive
definition set into an equivalent TRS. In Section 4, we discuss termination of the resulting TRS. In
Section 5, we conclude this paper and discuss future work of this research.

2 Preliminaries

In this section, we briefly recall basic notions and notations of many-sorted term rewriting [12] and
first-order logics with inductive predicates [4, 3]. Basic familiarity with term rewriting is assumed [1, 9].

1Γ̃, ∆̂ are terms representing Γ,∆, respectively, and we represent a sequent Γ ` ∆ by a term seq(Γ̃, ∆̂).

S. Zhang and N. Nishida 3

2.1 Many-Sorted Term Rewriting

Let S be a set of sorts. Throughout the paper, we use X as a family of S-sorted sets of variables:
X =

⊎
s∈SXs. Each function symbol f in an S-sorted signature Σ is equipped with its sort declaration

α1× ·· · ×αn → α , written as f : α1× ·· · ×αn → α , where α1, . . . ,αn,α ∈ S and n ≥ 0. The set of
(well-sorted) terms is denoted by T (Σ,X). The set of ground terms, T (Σ, /0), is abbreviated to T (Σ). The
set of variables appearing in any of terms t1, . . . , tn is denoted by Var(t1, . . . , tn). For a term t, the set of
positions of t is denoted by Pos(t). For a term t and a position p of t, the subterm of t at p is denoted by
t|p; we write t � t|p, and t � t|p if p 6= ε . The function symbol at the root position ε of a term t is denoted
by root(t). Given terms s, t1, . . . , tn and parallel positions p1, . . . , pn of s, we denote by s[t1, . . . , tn]p1,...,pn

the term obtained from s by replacing the subterm s|pi at pi by ti for each i ∈ {1, . . . ,n}.
A substitution σ is a sort-preserving mapping from variables to terms such that the number of vari-

ables x with σ(x) 6= x is finite, and is naturally extended over terms. The domain and range of σ are de-
noted by Dom(σ) andRan(σ), respectively. We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) =
{x1, . . . ,xn} and σ(xi) = ti for all 1 ≤ i ≤ n. A substitution σ is called ground if Ran(σ) ⊆ T (Σ). The
application of a substitution σ to a term t, σ(t), is abbreviated to tσ , and tσ is called an instance of t. A
most general unifier of terms s, t is denoted by mgu(s, t).

An S-sorted term rewrite system (TRS, for short) is a set of rewrite rules of the form `→ r such that
the sorts of the lhs ` and the rhs r coincide, ` is not a variable, and Var(`) ⊇ Var(r). In the following,
we use R as a TRS over an S-sorted signature Σ without notice. The reduction relation →R of R is
defined as follows: s→R t if and only if there exist a rewrite rule `→ r ∈R, a position p ∈ Pos(s), and
a substitution θ such that s|p = `θ and t = s[rθ]p. R is called left-linear if all rules in R are left-linear
(i.e., have linear terms as their lhss), and ground if all rules in R are ground (i.e., have ground terms as
their lhss and rhss).

The set of defined symbols of R is denoted by DR: DR = {root(`) | `→ r ∈ R}. The set of con-
structors ofR is denoted by CR: CR = Σ\DR. Terms in T (CR,X) are called constructor terms (ofR).
A term t is called basic if t is of the form f (t1, . . . , tn) such that f ∈ DR and t1, . . . , tn ∈ T (CR,X). R is
called a constructor system if every rule inR has a basic term as its lhs. A position p of a term t is called
basic if t|p is basic. The set of basic positions of t is denoted by B(t). TRS R is called quasi-reductive
if every ground basic term is reducible. A substitution σ is called constructor ifRan(σ)⊆ T (CR,X).

The marked symbol of a defined symbol f : α1× ·· ·×αn → α ∈ DR is denoted by f # and the set
of marked symbols for DR is denoted by D#

R. The marked symbol f # has sort α1×·· ·×αn→ dpsort,
where dpsort is a newly introduced sort for marked symbols. For a term t of the form f (t1, . . . , tn) with
f ∈ DR, the term f #(t1, . . . , tn) is denoted by t#. For each rule `→ r ∈R, the dependency pairs (DP, for
short) of R contains all rules `#→ u# such that u is a subterm of r and root(u) ∈ DR. The set of DPs of
R is denoted by DP(R). Let P ⊆ DP(R). A reduction sequence s#

1→P t#
1 →∗R s#

2→P t#
2 →∗R · · · with

s1, t1,s2, t2, . . . ∈ T (Σ,X) is called a dependency chain of P (P-chain, for short). The dependency graph
(DG, for short) ofR is denoted by DG(R): DG(R) = (DP(R),{(s#→ t#, u#→ v#) | s#→ t#, u#→ v# ∈
DP(R), ∃θ ,σ . t#θ →∗R u#σ}).

As a termination criterion, we use a simplified variant of the generalized subterm criterion [13]. A
multi-projection π for a set F of function symbols is a mapping that assigns every symbol f ∈ F a
non-empty multiset of its argument positions. We extend π for terms as follows:

• π(t) = π(ti1)⊕·· ·⊕π(tim) if t = f (t1, . . . , tn), f ∈ F , and π(f) = {i1, . . . , im}, and

• π(t) = {t}, otherwise,
where ⊕ is the union of multisets. For a binary relation A on terms, we denote the multiset extension of
A by Amul, and we write s Aπ t if π(s)Amul π(t).

4 On Transforming Inductive Definition Sets into Term Rewrite Systems

Theorem 2.1 (cf. [6, Theorem 3.3] and [13, Theorem 33]) A TRS R is terminating if for every cycle
P in DG(R) there exists a multi-projection π for D# such that P ⊆�π and P ∩�π 6= /0.

A TRS R is said to be GSC-terminating if R is terminating and its termination can be proved by the
generalized subterm criterion (Theorem 2.1).

An equation (over an S-sorted signature Σ) is a pair of terms, written as s≈ t, such that s, t ∈ T (Σ,X)
and s, t have the same sort. An equation s ≈ t is called an inductive theorem (of R) if sθ ↔∗R tθ for all
ground substitutions θ with Var(s, t)⊆Dom(θ) andRan(θ)⊆ T (Σ). Note that ifR is quasi-reductive,
then we can assume θ in the above definition to be a ground constructor substitution.

2.2 First-Order Logics with Inductive Predicates

In the rest of this paper, we consider a signature Σ with sorts S ⊇ {bool} such that true, false : bool ∈ Σ.
A symbol P : α1×·· ·×αn→ bool ∈ Σ is called a predicate symbol. A term P(t1, . . . , tn) with predicate
symbol P : α1×·· ·×αn→ bool is called an atomic formula. For brevity, we do not deal with ordinary
predicates but inductive predicates.

Definition 2.2 (inductive definition set [2, 3]) An inductive definition set Φ over Σ is a finite set of pro-
ductions of the form

A1 . . . Am

A
where A,A1, . . . ,Am are atomic formulas over Σ, and Var(A1, . . . ,Am) ⊆ Var(A). We denote the set of
productions for a predicate symbol P by Φ|P: Φ|P = {A1 ... Am

A ∈Φ | root(A)=P}. A production A1 ... Am
A is

called conclusion-linear if its conclusion A is linear. We say that Φ is conclusion-linear if all productions
in Φ are conclusion-linear.

Example 2.3 ([2]) Let us consider the signature Σ1 = { 0 : nat, s : nat→ nat, true, false : bool, E,O,N :
nat→ bool } and the following inductive definition set:

Φ1 =

{
N(0)

N(x)
N(s(x)) E(0)

E(x)
O(s(x))

O(x)
E(s(x))

}
Note that the symbols E, O, and N stand for predicates Even, Odd, and Nat, respectively. This inductive
definition set is conclusion-linear.

This paper considers standard first-order formulas over Σ. Structures for the signature are irrelevant
because we do not deal with any ordinary predicate. For this reason, we do not deal with any structure
for the signature, and define the semantics of formulas over the term structure for the signature in the
syntactic way as usual.

Definition 2.4 (semantics of formulas) Let Φ be an inductive definition set (over Σ) for predicate sym-
bols P1, . . . ,Pn where ki denotes the arity of Pi. The semantics of ground formula F—we write Φ |= F if
F holds w.r.t. Φ—is inductively defined as follows:

• Φ |= true,

• Φ |= A if and only if there exists a production A′1 ... A′m
A′ ∈ Φ and a substitution θ such that

A = A′θ and Φ |= A′jθ for all 1≤ j ≤ m,

• Φ |= ¬F ′ if and only if Φ 6|= F ′,

S. Zhang and N. Nishida 5

• Φ |= F1∨F2 if and only if Φ |= F1 or Φ |= F2, and

• Φ |= F1∧F2 if and only if Φ |= F1 and Φ |= F2.

We say that Φ is consistent if there is no ground formula F such that Φ |= F and Φ 6|= F. We say that a
formula F is valid w.r.t. Φ if Φ |= Fρ for all ground substitutions ρ with Dom(ρ)⊇ Var(F).

Note that we are interested in consistent inductive definition sets only.
A (multi-conclusion) sequent (over Σ) is a pair Γ ` ∆ such that Γ,∆ are finite multisets of formulas,

which can be written like lists of formulas. The application of a substitution θ to a finite multiset M of
formulas is defined as Mθ = {Fθ | F ∈M}. In the following, we use Γ,∆ for finite multisets of formulas,
and F for formulas.

For a sequent Γ ` ∆, the formulas in Γ are considered conjunctively (all the formulas are assumed to
hold at the same time), and the formulas in ∆ are considered disjunctively (at least one of the formulas
must hold for any substitution). To be more precise, a sequent Γ ` ∆ is valid w.r.t. Φ if ¬(

∧
F∈Γ F)∨

(
∨

F ′∈∆ F ′) is valid w.r.t. Φ.

Example 2.5 The sequent E(x)∨O(x) `N(x) is valid w.r.t. Φ1 in Example 2.3 because ¬(E(x)∨O(x))∨
N(x) is valid w.r.t. Φ1.

3 Transformation of Inductive Definition Sets into TRSs

In this section, we show a transformation of a conclusion-linear consistent inductive definition set Φ into
a TRSR such that a sequent Γ ` ∆ is valid w.r.t. Φ if and only if seq(Γ̃, ∆̂)≈ true is an inductive theorem
ofR.

3.1 Term Representation of Formulas and Sequents

To represent formulas and sequents as terms, we prepare function symbols for the truth values, logical
connectives, and ` as follows:

• the truth values are represented by constants true, false : bool which are included in Σ,

• logical connectives ∧,∨,¬ are represented by and,or : bool× bool→ bool, not : bool→ bool,
respectively, and

• ` is represented by seq : bool×bool→ bool.

A formula F is transformed by ·̌ into a term as follows:

• b̌ = b for b ∈ {true, false},

• Ǎ = A for an atomic formula A,

• F̌ = not(F̌ ′) if F = ¬F ′,

• F̌ = and(F̌1, F̌2) if F = F1∧F2, and

• F̌ = or(F̌1, F̌2) if F = F1∨F2.

To transform multisets of formulas into terms, we prepare ·̃ and ·̂ as follows:

• /̃0 = true,

• /̂0 = false,

6 On Transforming Inductive Definition Sets into Term Rewrite Systems

• {̃F}= {̂F}= F̌ ,

• ˜{F1, . . . ,Fn}= and(F̌1,and(F̌2, . . . ,and(ˇFn−1, F̌n) . . .) for n > 1, and

• ̂{F1, . . . ,Fn}= or(F̌1,or(F̌2, . . . ,or(ˇFn−1, F̌n) . . .) for n > 1,
Roughly speaking, M̃ and M̂ are the conjunction and disjunction of the formulas in M, respectively.
We represent a sequent Γ ` ∆ by a term seq(Γ̃, ∆̂). In the following, we abuse Σ for Σ∪ {and,or :
bool×bool→ bool, not : bool→ bool, seq : bool×bool→ bool}.

Example 3.1 The sequent E(x)∨O(x) ` N(x) is transformed into seq(or(E(x),O(x)),N(x)).

3.2 Rewriting Rules for Logical Connectives

For logical connectives (and, or, and not) and seq, we prepare the following rewrite rules:

RPL =

and(false, false)→ false, or(false, false)→ false,
and(false, true)→ false, or(false, true)→ true,
and(true, false)→ false, or(true, false)→ true,
and(true, true)→ true, or(true, true)→ true,

not(false)→ true, not(true)→ false,
seq(false, false)→ true, seq(false, true)→ true,
seq(true, false)→ false, seq(true, true)→ true,

Note that DRPL = {and, or, not, seq} andRPL is a ground TRS, i.e., both sides of all rules are ground.

3.3 Transformation of Productions into Rewrite Rules

We transform an inductive definition set Φ over Σ into a TRSRΦ as follows:

RΦ = { A→ ˜{A1, . . . ,An} |
A1 . . . An

A
∈Φ }

Example 3.2 We transform Φ1 in Example 2.3 into the following TRS:

RΦ1 = { N(0)→ true, N(s(x))→ N(x), E(0)→ true, E(s(x))→ O(x), O(s(x))→ E(x) }

3.4 Generation of Rewrite Rules for Co-Patterns

An inductive definition set implicitly defines that some atomic formulas do not hold, e.g., Φ1 6|= O(0).2

To represent such unsatisfaction, we need rewrite rules, e.g., O(0)→ false for Φ1 6|= O(0). Undefined
atomic formulas of Φ are co-patterns (cf. [8]) of RΦ. Roughly speaking, co-patterns of a TRS R are
strongly irreducible3 basic terms of R. If R is left-linear, then the finite set COR of co-patterns of R is
computable [8]: A ground basic term s is irreducible if and only if there exists a term t in COR such that
s = tθ for some substitution θ .

We add rewrite rules for the co-patterns ofRΦ as follows:

Rco
Φ =RΦ∪{ t→ false | t ∈ COR }

Example 3.3 FromRΦ1 in Example 3.2, we obtain the TRSRco
Φ1

=RΦ1 ∪{ O(0)→ false }.
2We have Φ1 |= ¬O(0), and thus, we need a reduction for Φ1 6|=O(0).
3A term is strongly irreducible w.r.t. a TRS R if no ground normalized instance of the term is reducible [9].

S. Zhang and N. Nishida 7

3.5 Properties of the Resulting TRSs

The resulting TRSRΦ for a conclusion-linear inductive definition set Φ has the following properties.

Proposition 3.4 All of the following hold:

• Rco
Φ

and Rco
Φ
∪RPL are left-linear constructor systems such that DRco

Φ
= {P | P is an inductive

predicate of Φ} and DRco
Φ
∪RPL =DRco

Φ
∪DRPL , respectively, and

• Rco
Φ

andRco
Φ
∪RPL are quasi-reductive.

Proof. Trivial by definition. 2

Lemma 3.5 For any ground atomic formula A, both of the following hold:

(a) Φ |= A if and only if A→∗RΦ∪RPL
true (i.e., A→∗Rco

Φ
∪RPL

true), and

(b) Φ 6|= A if A has no normal form ofRco
Φ
∪RPL.

Proof.

(a) (Sketch) The if and only-if parts can straightforwardly be proved by induction on the length of
reduction sequences and the depth of recursion of Φ |=, respectively.

(b) We proceed by contradiction. Assume that Φ |= A and A has no normal form of Rco
Φ
∪RPL.

It follows from (a) that A→∗Rco
Φ
∪RPL

true, and hence A has a normal form of Rco
Φ
∪RPL. This

contradicts the assumption. 2

Lemma 3.6 Suppose that Rco
Φ
∪RPL is ground confluent. Then, for any ground atomic formula A, both

of the following hold:

(a) Φ 6|= A if A→∗Rco
Φ
∪RPL

false, and

(b) if Φ 6|= A, then either A has no normal form ofRco
Φ
∪RPL or A→∗Rco

Φ
∪RPL

false.

Proof.

(a) Assume that A→∗Rco
Φ
∪RPL

false. It follows from ground confluence ofRco
Φ
∪RPL that A 6→∗Rco

Φ
∪RPL

true. Therefore, it follows from Lemma 3.5 (a) that Φ 6|= A.

(b) Assume that Φ 6|= A. Then, it follows from Lemma 3.5 (a) that A 6→∗Rco
Φ
∪RPL

true. SinceRco
Φ
∪RPL

is quasi-reductive (Proposition 3.4), the normal forms with sort bool are true and false. Therefore,
A→∗Rco

Φ
∪RPL

false or A has no normal form ofRco
Φ
∪RPL. 2

Lemma 3.7 Suppose thatRco
Φ
∪RPL is ground terminating and ground confluent. Then, for any ground

formula F, both of the following hold:

• Φ |= F if and only if F̌ →∗Rco
Φ
∪RPL

true, and

• Φ 6|= F if and only if F̌ →∗Rco
Φ
∪RPL

false.

Proof. (Sketch) Using Lemmas 3.5 and 3.6, the if and only-if parts of both claims can straightforwardly
be proved mutually by structural induction on F . 2

Lemma 3.8 Suppose that Φ is conclusion-linear and consistent. Then, all of the following hold:

8 On Transforming Inductive Definition Sets into Term Rewrite Systems

• every ground term has at most a normal form ofRco
Φ
∪RPL, and

• ifRco
Φ
∪RPL is ground terminating, thenRco

Φ
∪RPL is ground confluent.

Proof. Since the second claim is an immediate consequence of the first claim, we only show the first
claim. Assume that there exists a ground term t that has two or more normal forms. Since we have only
rewrite rules for bool, the ground term t has the sort bool. SinceRco

Φ
∪RPL is quasi-reductive, the normal

forms of t are true and false. Let F be a formula such that F̌ = t. Then, it follows from Lemma 3.7 that
Φ |= F and Φ 6|= F . This contradicts consistency of Φ. 2

Note that if Φ is conclusion-linear andRco
Φ
∪RPL is ground confluent, then Φ is consistent.

Theorem 3.9 Suppose that Φ is consistent and Rco
Φ
∪RPL is ground terminating. A sequent Γ ` ∆ is

valid w.r.t. Φ if and only if seq(Γ̃, ∆̂)≈ true is an inductive theorem ofRco
Φ
∪RPL.

Proof. It follows from Proposition 3.4 that DRco
Φ
∪RPL = DRco

Φ
∪{and, or, not, seq}, and thus, ρ is a

ground substitution for formulas if and only if ρ is a ground constructor substitution forRco
Φ
∪RPL.

We first show the only-if part. Let ρ be a ground constructor substitution withDom(ρ)⊇Var(Γ̃, ∆̂).
Then, ρ is a ground substitution for Γ ` ∆ with Dom(ρ) ⊇ Var(Γ,∆). Since Γ ` ∆ is valid w.r.t. Φ,
we have that Φ |= ¬(

∧
F∈Γ F)ρ ∨ (

∨
F ′∈∆ F ′)ρ . We make a case distinction depending on whether Φ |=

¬(
∧

F∈Γ F)ρ holds or not.

• Consider the case where Φ |= ¬(
∧

F∈Γ F)ρ . Then, we have that Φ 6|= (
∧

F∈Γ F)ρ . It follows from
Lemma 3.7 that Γ̃ρ→∗Rco

Φ
∪RPL

false, and hence seq(Γ̃, ∆̂)ρ→∗Rco
Φ
∪RPL

seq(false, t2)→Rco
Φ
∪RPL true.

• Consider the remaining case where Φ 6|= ¬(
∧

F∈Γ F)ρ . Then, we have that Φ |= (
∧

F∈Γ F)ρ and
Φ |= (

∨
F ′∈∆ F ′)ρ . It follows from Lemma 3.7 that Γ̃ρ→∗Rco

Φ
∪RPL

true and ∆̂ρ→∗Rco
Φ
∪RPL

true, and

hence seq(Γ̃, ∆̂)ρ →∗Rco
Φ
∪RPL

seq(true, true)→Rco
Φ
∪RPL true.

Therefore, seq(Γ̃, ∆̂)≈ true is an inductive theorem ofRco
Φ
∪RPL.

Next, we show the if part. Let ρ be a ground substitution for Γ ` ∆ with Dom(ρ) ⊇ Var(Γ,∆).
Then, ρ is a ground constructor substitution with Dom(ρ) ⊇ Var(Γ̃, ∆̂). Since seq(Γ̃, ∆̂) ≈ true is an
inductive theorem of Rco

Φ
∪RPL, we have that seq(Γ̃, ∆̂)ρ ↔∗Rco

Φ
∪RPL

true. It follows from Lemma 3.8

that Rco
Φ
∪RPL is ground confluent, and hence, seq(Γ̃, ∆̂)ρ →∗Rco

Φ
∪RPL

seq(t1, t2)→Rco
Φ
∪RPL true, where

either t1 = false or t1 = t2 = true. Thus, Γ̃ρ→∗Rco
Φ
∪RPL

t1 and ∆̂ρ→∗Rco
Φ
∪RPL

t2. We make a case distinction
depending on t1.

• Consider the case where t1 = false. Since Γ̃ρ→∗Rco
Φ
∪RPL

t1 = false, it follows from Lemma 3.7 that
Φ 6|= (

∧
F∈Γ F)ρ , and hence Φ |= ¬(

∧
F∈Γ F)ρ ∨ (

∨
F ′∈∆ F ′)ρ .

• Consider the remaining case where t1 = t2 = true. Since ∆̂ρ →∗Rco
Φ
∪RPL

t2 = true, it follows from
Lemma 3.7 that Φ |= (

∨
F ′∈∆ F ′)ρ , and hence Φ |= ¬(

∧
F∈Γ F)ρ ∨ (

∨
F ′∈∆ F ′)ρ .

Therefore, ¬(
∧

F∈Γ F)∨ (
∨

F ′∈∆ F ′) is valid w.r.t. Φ, and hence Γ ` ∆ is valid w.r.t. Φ. 2

4 Termination of the Resulting TRSs

In this section, we discuss termination ofRco
Φ
∪RPL, which is necessary for the correctness ofRco

Φ
∪RPL.

S. Zhang and N. Nishida 9

A given inductive definition set Φ defines inductive predicates inductively and must often be ter-
minating in the sense of the computation of Φ |= ·, while Φ is not necessary to be so. In our setting,
Rco

Φ
∪RPL is expected to be terminating. Using termination proof techniques for TRSs, termination of

Rco
Φ
∪RPL can be examined after the transformation. For our ultimate goal which is the comparison

of RI and cyclic proof systems, we would like to ensure termination of Rco
Φ
∪RPL for arbitrary Φ that

is terminating. On the other hand, one may specify a non-terminating inductive definition set. For this
reason, as a criterion to ensure termination ofRco

Φ
∪RPL, we consider an inductive definition set Φ such

that the TRS {A→ Ai | A1 ... An
A ∈Φ, 1≤ i≤ n} is GSC-terminating.

The dependency pairs ofRco
Φ

have the following property w.r.t. Φ.

Lemma 4.1 DP({A→ Ai | A1 ... An
A ∈Φ, 1≤ i≤ n}) = DP(Rco

Φ
) up to variable-renaming.

Proof. By definition, we have that
• DP({A→ Ai | A1 ... An

A ∈Φ, 1≤ i≤ n}) = {A#→ A#
i |

A1 ... An
A ∈Φ, 1≤ i≤ n}, and

• DP(Rco
Φ
) = DP(RΦ) = {A#→ A#

i | A→ ˜{A1, . . . ,An} ∈ RΦ,1≤ i≤ n}.
Therefore, the claim holds. 2

By definition, it is clear that DP(RPL) = /0. For a directed graph G = (V,E), we denote by Cycles(G) the
family of node sets that are nodes of cycles of G:

Cycles(G) = {V ′ | there exists a set of edges E ′ such that (V ′,E ′) is a cycle of G }

The dependency graphs ofRco
Φ
∪RPL have the following property w.r.t. Φ.

Lemma 4.2 Cycles(DG({A→Ai | A1 ... An
A ∈Φ, 1≤ i≤ n}))=Cycles(DG(Rco

Φ
∪RPL)) up to variable-

renaming.

Proof. It follows from Lemma 4.1 that DG({A→ Ai | A1 ... An
A ∈Φ, 1≤ i≤ n}) = DG(Rco

Φ
). It follows

from DP(RPL) = /0 that Cycles(DG(Rco
Φ
)) = Cycles(DG(Rco

Φ
∪RPL)). Therefore, the claim holds. 2

Lemma 4.3 Let R1 and R2 be TRSs such that Cycles(DG(R1)) = Cycles(DG(R2)). R1 is GSC-
terminating if and only ifR2 is so.

Proof. Let D#
i be the set of marked symbols in Cycles(DG(Ri)) for i = 1,2. It follows from the as-

sumption that D#
1 = D#

2. It suffices to show the if part. Assume that R2 is GSC-terminating. Let P be
a cycle in DG(R1). Then, by the assumption, P is a cycle of DG(R2). Since R2 is GSC-terminating,
there exists a multi-projection π for D#

2 (= D#
1) such that P ⊆ �π and P ∩�π 6= /0. Therefore, R1 is

GSC-terminating. 2

The following theorem is a direct consequence of Lemmas 4.2 and 4.3.

Theorem 4.4 The TRS {A→ Ai | A1 ... An
A ∈Φ, 1≤ i≤ n} is GSC-terminating if and only ifRco

Φ
∪RPL

is so.

Example 4.5 Since {E(s(x))→O(x), O(s(x))→ E(x), N(s(x))→N(x)} is GSC-terminating, it follows
from Theorem 4.4 thatRco

Φ1
∪RPL is GSC-terminating.

Corollary 4.6 (correctness ofRco
Φ
∪RPL) Suppose that Φ is conclusion-linear and consistent, and the

TRS {A→ Ai | A1 ... An
A ∈Φ, 1≤ i≤ n} is GSC-terminating. A sequent Γ ` ∆ is valid w.r.t. Φ if and only

if seq(Γ̃, ∆̂)≈ true is an inductive theorem ofRco
Φ
∪RPL.

10 On Transforming Inductive Definition Sets into Term Rewrite Systems

5 Conclusion

In this paper, we showed a transformation from a conclusion-linear consistent inductive definition set
Φ into a TRS Rco

Φ
∪RPL. We also showed that if the TRS {A → Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n} is
GSC-terminating, then Rco

Φ
∪RPL is ground terminating and ground confluent. The results in this paper

enable us to establish the common setting for RI and cyclic proof systems, and thus, we are ready for
transformations between them.

As future work, we will relax the conclusion-linear and termination assumptions. We will extend
the results in this paper to ordinary predicates, transforming inductive definition sets with ordinary and
inductive predicates into LCTRSs. For our ultimate goal, we will transform cyclic proofs and RI proofs
each other in order to compare cyclic proof systems and RI.

References
[1] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,

doi:10.1017/CBO9781139172752.
[2] James Brotherston (2005): Cyclic Proofs for First-Order Logic with Inductive Definitions. In: Proc.

TABLEAUX 2005, LNCS 3702, Springer, pp. 78–92, doi:10.1007/11554554 8.
[3] James Brotherston (2006): Sequent Calculus Proof Systems for Inductive Definitions. Ph.D. thesis, University

of Edinburgh.
[4] Gilles Dowek (2011): Proofs and Algorithms: An Introduction to Logic and Computability. UTiCS, Springer,

doi:10.1007/978-0-85729-121-9.
[5] Carsten Fuhs, Cynthia Kop & Naoki Nishida (2017): Verifying Procedural Programs via Constrained Rewrit-

ing Induction. ACM Trans. Comput. Logic 18(2), pp. 14:1–14:50, doi:10.1145/3060143.
[6] Jürgen Giesl, Thomas Arts & Enno Ohlebusch (2002): Modular Termination Proofs for Rewriting Using

Dependency Pairs. J. Symb. Comput. 34(1), pp. 21–58, doi:10.1006/jsco.2002.0541.
[7] Cynthia Kop & Naoki Nishida (2013): Term Rewriting with Logical Constraints. In: Proc. FroCoS 2013,

LNCS 8152, pp. 343–358, doi:10.1007/978-3-642-40885-4 24.
[8] Azeddine Lazrek, Pierre Lescanne & Jean-Jacques Thiel (1990): Tools for Proving Inductive Equali-

ties, Relative Completeness, and omega-Completeness. Inf. Comput. 84(1), pp. 47–70, doi:10.1016/0890-
5401(90)90033-E.

[9] Enno Ohlebusch (2002): Advanced Topics in Term Rewriting. Springer, doi:10.1007/978-1-4757-3661-8.
[10] Uday S. Reddy (1990): Term Rewriting Induction. In: Proc. CADE 1990, LNCS 449, Springer, pp. 162–177,

doi:10.1007/3-540-52885-7 86.
[11] John C. Reynolds (2002): Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. LICS

2002, IEEE Computer Society, pp. 55–74, doi:10.1109/LICS.2002.1029817.
[12] Terese (2003): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55, Cambridge

University Press.
[13] Akihisa Yamada, Christian Sternagel, René Thiemann & Keiichirou Kusakari (2016): AC Dependency Pairs

Revisited. In: Proc. CSL 2016, LIPIcs 62, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 8:1–8:16,
doi:10.4230/LIPIcs.CSL.2016.8.

http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1007/11554554_8
http://dx.doi.org/10.1007/978-0-85729-121-9
http://dx.doi.org/10.1145/3060143
http://dx.doi.org/10.1006/jsco.2002.0541
http://dx.doi.org/10.1007/978-3-642-40885-4_24
http://dx.doi.org/10.1016/0890-5401(90)90033-E
http://dx.doi.org/10.1016/0890-5401(90)90033-E
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1007/3-540-52885-7_86
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.8

	Introduction
	Preliminaries
	Many-Sorted Term Rewriting
	First-Order Logics with Inductive Predicates

	Transformation of Inductive Definition Sets into TRSs
	Term Representation of Formulas and Sequents
	Rewriting Rules for Logical Connectives
	Transformation of Productions into Rewrite Rules
	Generation of Rewrite Rules for Co-Patterns
	Properties of the Resulting TRSs

	Termination of the Resulting TRSs
	Conclusion

