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Our research aims to reason about the correctness of refactoring transformations of Erlang programs.
As a stepping stone, we have developed formal semantics for sequential Core Erlang in the Coq
proof assistant and we investigate reasoning about program transformations in Core Erlang. By
refactoring, we mean program transformations that are expected to preserve the observable behaviour
of programs. This property is characterised by a behavioural equivalence relation defined over the
formal definition of semantics.

In this paper, we adapt fundamental formalisations of expression equivalence to a Core Erlang
subset, ranging from the simplest behavioural equivalence to logical relations and contextual equiva-
lence. We examine the properties of these equivalence definitions and formally establish connections
among them. The results are implemented in the Coq proof assistant.

1 Introduction

Most language processors and refactoring tools lack a formal, precise specification of how the code
is affected by the changes they may make. In particular, refactoring tools are expected not to change
the behaviour of any program, but in practice, this property is only validated by testing. This form
of verification may or may not provide trust in users willing to refactor industrial-scale code. Higher
assurance can be achieved by making formal arguments to verify semantics-preservation (behaviour-
preservation). This requires a rigorous, formal definition of the programming language under refactoring,
a precise description of the refactoring’s effect on the program, and a suitable definition of program
equivalence.

The research presented in this paper is part of a wider project dedicated to improving the trustwor-
thiness of Erlang refactorings [12]. As a stepping stone, we focus on Erlang’s intermediate language,
Core Erlang, and we investigate refactoring correctness and program equivalence on this lower level lan-
guage first. In order to make the verification machine-checkable, we have developed natural semantics
for Core Erlang [1, 2] in Coq. Although our ultimate goal is to prove Erlang refactorings correct, results
on Core Erlang may contribute to other research projects that target languages in the BEAM family, that
is languages that translate to Core Erlang during the compilation process, e.g. Elixir or Erlang [10]).
In particular, given a trusted translation to Core Erlang, we can reason about semantic equivalence, and
therefore refactoring step correctness, for such a language.

In this paper we investigate a number of approaches to defining semantic equivalence of Core Er-
lang programs and compare them with respect to their appropriateness for reasoning about refactoring
correctness. In the remainder of the paper, Section 2 presents the refactoring definition and verifica-
tion approach that motivates the fine-grained definition of semantic equivalence, and in Section 3 we
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briefly survey related work. Then in Section 4 we overview the various equivalence definitions for Core
Erlang, including simple behavioural equivalence [22] and contextual equivalence based on logical rela-
tions [23, 29], pointing out their advantages and disadvantages. Finally, Section 5 concludes.

2 Motivation

The concept of semantic equivalence between programs (or patterns of programs in general) plays a
key role in the verification of refactoring. A refactoring is a program transformation that is expected to
preserve behaviour [8]; that is, the program’s observable behaviour should not be affected by the various
structural changes made by the refactoring. The behaviour-preservation is typically characterised with
semantics preservation, or slightly relaxed, semantic equivalence. The latter has to be defined carefully:
the internal workings of the program may be altered, but the semantic equivalence has to imply that
the transformed program is observationally indistinguishable from the original when run in an arbitrary
environment.

Local transformations. The typical refactoring process, i.e. reworking a piece of code to increase its
quality, involves multiple, smaller refactoring steps, called prime or micro-refactorings. These smaller
steps may vary from reordering arguments or eliminating variables to extracting code portions to func-
tion abstractions. Even though these modifications are likely to be local to syntactic segments of code
(e.g. expressions, functions or modules), an entire software project has to be taken into account when
reasoning about the correctness of the whole refactoring step; to take a concrete example, the renaming
of a function will affect not only the module in which the function is defined, but also every module in
which the function is called.

To avoid reasoning about equivalence of extensive code bases several times, we can outline the scope
of each smaller transformation and reason about the correctness in two steps: whether the transformation
is locally correct, and whether the local equivalence implies semantic equivalence in the scope of the
entire code base. The syntactically local changes may be seen as pairs of concrete expressions: the
original and transformed versions of the code fragments. Reasoning about correctness in this case is
done by establishing contextual equivalence between the original and result expressions.

In practice, many of the small changes are instances of a similar transformation logic, implementing
a form of parametric expression rephrasing. Furthermore, these typical local transformations can easily
be defined by using conditional term rewrite rules — the verification of such refactoring steps may be
carried out by checking a conditional contextual equivalence between the matching and replacement
patterns in the rewrite rule.

Refactoring schemes. On the other hand, many micro-refactoring steps are not syntactically local,
they can span across compilation units via semantic dependencies such as data-flow and control-flow
via inter-module calls. In our terminology we say that such transformations are extensive and they are
carried out in a semantic context, e.g. along the expression of a data-flow chain.

Basically, extensive refactoring is a special composition of local changes, following the semantic
dependencies in the program (e.g. data-flow or binding dependencies). Such transformations are not
local to expressions nor to modules (consider, for instance, renaming of functions or altering of data type
definitions), but they are likely to be local to a program slice. In our previous work, we argued that
the general definition of extensive refactoring can be given with so-called refactoring schemes [11, 12],
which define the above-mentioned special combination of local rewrite rules using semantic rewrite
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strategies. The verification of extensive steps involves reasoning about the locality to a program slice,
the local correctness within the slice, and about the local consistency implying program-wide equiva-
lence. Again, the local correctness is expressed in terms of a set of conditional contextual equivalence
statements, while the argument of the local correctness implying equivalence on the code base level
needs inductive reasoning with the semantics in general.

Nevertheless, the verification of both structurally local and (semantics-driven) extensive code trans-
formations involves checking equivalence between first-order terms or expressions. It is therefore the
main motivation of this work to provide basis for reasoning about refactorings by establishing the appro-
priate semantics and equivalence definitions.

3 Related Work

Formal semantics for Core Erlang. In the early stages of our project, we developed an inductive big-
step semantics for sequential Core Erlang [1, 2] considering exceptions and simple side effects, which
has also been implemented in Coq. This semantics is based on related research on Erlang and Core
Erlang, e.g. reversible semantics and debugging [15, 14, 20], a framework for reasoning about Erlang [9]
and symbolic execution [28]. We have also investigated different big-step definition styles [4], and
recently we also implemented an equivalent functional big-step semantics [21] which enabled extensive
validation [3].

Program equivalence. There are different approaches to determining semantic equivalence, including
simple behavioural equivalence [22], bisimulation [13, 18], behavioural equivalence by means of a ded-
icated logic [27], and contextual equivalence [23, 29], in which logical relations are used to prove the
equivalence between programs.

With the functional big-step semantics we have developed, we can “step-index” the equivalence re-
lations using the recursion depth limit, moreover, we can also prove properties of logical relations, as
Owens et al. point out [21]. Another suitable way to work with logical relations and contextual equiv-
alence is using a “frame stack” semantics [25] which enables the evaluation of expressions in arbitrary
reduction contexts (or evaluation frames). We also investigated this semantics definition style.

Another approach is to use algorithms that can find proofs for program equivalence; however, for
these to work we need either an operational semantics based on term rewriting [16], or reasoning in
matching logic [5]; there is ongoing work of ours to formalise matching logic in Coq [17].

The results presented in this paper are based on the work by Pitts [23, 24] and Culpepper et al. [7, 29];
we investigate how to adapt to Core Erlang the methods they used to establish equivalence definitions
using logical relations and CIU and contextual pre-orders, and related theorems, prove the equality of
these relations.1 All of our results are formalised in the Coq proof assistant [6].

4 Program equivalence definitions

In order to be able to reason about the correctness of refactoring, a suitable program equivalence defi-
nition is needed for the object language. This section summarises two approaches: simple behavioural
equivalence, and contextual equivalence based on step-indexed logical relations.

1We have proved the logical relations and the CIU-preoder equal, and now we investigate the equality of contextual preorder
and CIU-preoder
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Side effects. Both Erlang and Core Erlang are impure languages, that is, expressions can have side
effects. Our formalisation of Core Erlang is able to interpret simple forms of side effects and accumulate
them in a log, but it needed to be investigated whether side effects should count toward equivalence
(regardless of the definition style).

• Complete behavioural equivalence. Strict equivalence is when two evaluable expressions pro-
duce the same results and the same side effects in the same order. A simple Core Erlang example
for complete behavioural equivalence can be the following:

e ≡ do call ’erlang ’:’+’(2, 2) e

This equivalence expresses that any expression e fully preserves its semantics when preceded by a
pure expression (2+2) in a sequential composition.

• Weak behavioural equivalence. Depending on the context, some input or output side effects
may be reordered without changing the observable behaviour. Therefore, we defined a weaker
equivalence as well, which still requires the expressions to produce the same results and the same
set of side effects, but allows these effects to resolve in a different order. For instance, with this we
can prove the following two expressions (weakly) equivalent, as the only difference between them
is that the first two side effects (produced by the two fwrite applications) are swapped:

do (do call ’io ’:’fwrite ’(1) call ’io ’:’fwrite ’(2)) e ≡weak
do (do call ’io ’:’fwrite ’(2) call ’io ’:’fwrite ’(1)) e

4.1 Behavioural Equivalence

On our first attempt, we investigated program equivalence by the textbook definition, i.e. simple be-
havioural equivalence [22]: two expressions are said to be equivalent if and only if in every starting
configuration they evaluate to the “same result”, or they both diverge. We defined both complete and
weak equivalence that treat side effects slightly differently, using a functional big-step semantics of Core
Erlang [19]. Note that in the following formulas eval is the semantic function, d is the recursion depth
limit, eff,eff’ denote the initial and final side effect logs, and res is the final result (a value or an excep-
tion).

• Complete behavioural equivalence.

e1 ≡ e2 :=

∀eff,res,eff’ :

(∃d : eval d e1 eff = (res,eff’)) ⇐⇒
(∃d : eval d e2 eff = (res,eff’))

• Weak behavioural equivalence.

e1 ≡weak e2 :=

(∀eff,res,eff’ : (∃d : eval d e1 eff = (res,eff’))⇒
(∃eff” : (∃d : eval d e2 eff = (res,eff”))∧Permutation eff’ eff”))∧

(∀eff,res,eff’ : (∃d : eval d e2 eff = (res,eff’))⇒
(∃eff” : (∃d : eval d e1 eff = (res,eff”))∧Permutation eff’ eff”))
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After defining our equivalence relations, we needed to prove that they are reflexive, symmetric and
transitive. Another important aspect of behavioural equivalence is that it should be a congruence [22];
this property helps proving compound expressions equivalent, and took significant effort to formalise
and prove in Coq [19].

It is worth mentioning that to prove weak equivalence congruent, we needed to prove that the log
of (the currently formalised) side effects does not affect the evaluation. This may change if the side
effects are formalised at a different level of granularity. We also proved the natural property of complete
equivalence implying weak equivalence.

Equivalence of function expressions. This definition of behavioural equivalence deals with the equiv-
alence of values and side effects. Although values of most types can be checked for equality trivially,
there is a special case: functions. For example:

fun(X) -> X + 2 ≡ fun(X) -> (X + 1) + 1

In Erlang and in Core Erlang, function expressions evaluate to closures (the function normal form,
with all of its free variables substituted in its body expression). In this particular case, we would need
to prove the following closure equality: Clos [X ] (X + 2) = Clos [X ] ((X + 1) + 1). Obviously, this
structural equality cannot be proved, which means if we used simple behavioural equivalence, we can
only prove structurally equal (identical) functions equivalent.

4.2 Contextual Equivalence

Instead of proving the above-mentioned closure equality, we could prove that these closures behave the
same way in the same expression contexts. That is, we can consider using contextual equivalence instead
of the behavioural one. Apparently, to be able to use this equivalence, we need to define expression
contexts (type Context), which are basically expressions with one of their subexpressions replaced by a
hole. This hole can be substituted by any expression (e.g. apply f (1,�,3)[2] = apply f (1,2,3)) to
obtain valid expressions.

To investigate this equivalence, we chose a simple subset of sequential Core Erlang without consid-
ering side effect first [6]. Note that we plan to reinject side effects in the near future which would also
count towards the equivalence, just as in Section 4.1.

v ::= l | x | f/k | fun(x1, . . . ,xk)→ e | fun f/k(x1, . . . ,xk)→ e

e ::= v | apply e(e1, . . . ,ek) | let x = e1 in e2 | letrec f/k = fun(x1, . . . ,xk)→ e0 in e

| e1 + e2 | if e1 then e2 else e3

This small language supports integer literals, variable names, function identifiers (function name, arity
pairs), simple and recursive functions as syntactical values. Compound expressions are function applica-
tions, let and letrec expressions, while we also support simple conditional and addition expressions
to be able to write meaningful examples. Now we define expression contexts the following way (note
that there is distinct recursive and simple function contexts):

C ::= � | fun(x1, . . . ,xk)→C | fun f/k(x1, . . . ,xk)→C

| apply C(e1, . . . ,ek) | apply e(C,e2, . . . ,ek) | · · · | apply e(e1, . . . ,ek−1,C)

| let x =C in e2 | let x = e1 in C

| letrec f/k = fun(x1, . . . ,xk)→C in e | letrec f/k = fun(x1, . . . ,xk)→ e0 in C

|C+ e2 | e1 +C | if C then e2 else e3 | if e1 then C else e3 | if e1 then e2 else C
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We define the substitution of the � by an expression in the usual way (see [23] for example), and we will
denote it by C[e]. Next, we define the contextual equivalence (similarly to Pitts [23]) using contextual
preorders:

e1 ≡ctx e2 := e1 ≤ctx e2∧ e2 ≤ctx e1

e1 ≤ctx e2 := ∀C,res : (∃d : eval d C[e1] = res)⇒
(∃d : eval d C[e2] = res)

While it is straightforward to disprove expressions contextually equivalent, the proof of equivalence
is significantly more complex as it requires induction over contexts. Instead of proving expressions
contextually equivalent, one can define other equivalence (and preorder) relations which are simpler to
prove for concrete expressions, and prove these relations equal to the contextual equivalence.

Moreover, there is another problem with this definition: this relation is equal to syntactical equality
(because of C[e1] and C[e2] must evaluate to the same value, considering a function context as C, only
equal function expression bodies can be evaluated to equal closures), thus we need to define the equiv-
alence of values too. One of the most common ways to overcome these limitations is to define CIU-
equivalence and logical relations and prove them equal with the contextual equivalence [23, 29, 24]. We
also note that according to Pitts [25] (Appendix B.3) it is sufficient to prove termination of equivalent
expressions instead of the equivalence of their observable results (i.e. their values); however, in our case,
simple side effects should be explicitly considered at this point, because they do not affect the termination
of programs.

4.3 The logical relation

First, we followed the footsteps of Pitts [23], and adapted his “logical simulation relation”. Unfortu-
nately, their mathematical definitions cannot be directly formalised in Coq as they use statements that
are not strictly positive and therefore do not pass Coq’s positivity checker. Neither could we use types
as others did [7] while formalising such logical relations, because both Core Erlang and Erlang are
dynamically typed. These are the reasons why we chose to follow the idea of using step-indexed rela-
tions [29, 24]. First, we needed to formalise the termination relation inductively, in frame stack semantics
(〈Fs,e〉 ⇓k if e terminates in exactly in k steps, and 〈Fs,e〉 ⇓ if e terminates in Fs reduction context, for the
details we refer to Appendix B and [6]). This semantics has the advantage of evaluating expressions in
arbitrary reduction contexts (i.e. frame stacks) over our current functional big-step semantics [19]. Con-
crete frame stacks will be denoted by standard list notation (i.e. [] denotes the empty list and [F1, . . . ,Fn]
frame stack contains frames F1, . . . ,Fn, while F :: Fs prepends F to the list of frames Fs).

Now we define the step-indexed logical relations on closed values (V ), closed frame-stacks (F ),
and closed expressions (E ) for our language (closedness and variable scoping is detailed in Appendix
A). In the rest of the paper, e[v1|x1, . . . ,vk|xk] denotes the substitution of variables (or function identifiers)
x1, . . . ,xk to v1, . . . ,vk in e.

(l1, l2) ∈ Vn ⇐⇒ l1 = l2
(fun(x1, . . . ,xk)→ e,fun(x1, . . . ,xk)→ e′) ∈ Vn ⇐⇒ ∀m < n : ∀v1,v′1, . . . ,vk,v′k :

(v1,v′1) ∈ Vm∧·· ·∧ (vk,v′k) ∈ Vm =⇒ (e[v1|x1, . . . ,vk|xk],e′[v′1|x1, . . . ,v′k|xk]) ∈ Em

(fun f/k(x1, . . . ,xk)→ e,fun f/k(x1, . . . ,xk)→ e′) ∈ Vn ⇐⇒
∀m < n : ∀v1,v′1, . . . ,vk,v′k : (v1,v′1) ∈ Vm∧ . . .∧ (vk,v′k) ∈ Vm =⇒

(e[fun f/k(x1, . . . ,xk)→ e| f/k,v1|x1, . . . ,vk|xk],e′[fun f/k(x1, . . . ,xk)→ e′| f/k,v′1|x1, . . . ,v′k|xk]) ∈ Em
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(Fs1,Fs2) ∈ Fn ⇐⇒ ∀m≤ n,v1,v2 : (v1,v2) ∈ Vm =⇒ 〈Fs1,v1〉 ⇓m =⇒ 〈Fs2,v2〉 ⇓

(e1,e2) ∈ En ⇐⇒ ∀m≤ n,Fs1,Fs2 : (Fs1,Fs2) ∈ Fm =⇒ 〈Fs1,e1〉 ⇓m =⇒ 〈Fs2,e2〉 ⇓

Then we extend these relations to any expression (or value) pairs with closing substitutions (i.e. the
free variables of the expression are replaced by closed values). A substitution is a function (we will
denote it with ξ ), which assigns expressions to free variables and function identifiers. Technically, the
substitution of variables above is also defined by such a function in the Coq formalisation. The notation
e[ξ ] means that we apply the substitution ξ to the expression e (i.e. we replace all free variables and
function identifiers in e with the corresponding expressions in ξ ).

(ξ1,ξ2) ∈GΓ
n ⇐⇒ dom(ξ1) = dom(ξ2) = Γ∧∀x ∈ Γ : (ξ1(x),ξ2(x)) ∈ Vn

(v1,v2) ∈ VΓ ⇐⇒ ∀n,ξ1,ξ2 : (ξ1,ξ2) ∈GΓ
n =⇒ (v1[ξ1],v2[ξ2]) ∈ Vn

(e1,e2) ∈ EΓ ⇐⇒ ∀n,ξ1,ξ2 : (ξ1,ξ2) ∈GΓ
n =⇒ (e1[ξ1],e2[ξ2]) ∈ Vn

After having these relations defined, we proceeded to prove the two most important properties of them
(just like others did [7, 29, 24]): the “fundamental property” (a form of reflexivity) and the compatibility
rules which are forms of congruence. Obviously, to be able to manage the proofs, a number of lemmas
were needed (we refer to the formalisation [6] for more details).

Theorem 1 (Fundamental property)

EXP Γ ` e =⇒ (e,e) ∈ EΓ

VAL Γ ` v =⇒ (v,v) ∈ VΓ

Theorem 2 (Compatibility rules)

x ∈ Γ

(x,x) ∈ VΓ

f/k ∈ Γ

( f/k, f/k) ∈ VΓ (l, l) ∈ VΓ

(b1,b2) ∈ EΓ∪{x1,...,xk}

(fun(x1, . . . ,xk)→ b1,fun(x1, . . . ,xk)→ b2) ∈ VΓ

(b1,b2) ∈ EΓ∪{ f/k,x1,...,xk}

(fun f/k(x1, . . . ,xk)→ b1,fun f/k(x1, . . . ,xk)→ b2) ∈ VΓ

(v1,v2) ∈ VΓ

(v1,v2) ∈ EΓ

(e,e′) ∈ EΓ (e1,e′1) ∈ EΓ · · · (ek,e′k) ∈ EΓ

(apply e(e1, . . . ,ek),apply e′(e′1, . . . ,e
′
k)) ∈ EΓ

(e1,e′1) ∈ EΓ (e2,e′2) ∈ EΓ

(e1 + e2,e′1 + e′2) ∈ EΓ

(e,e′) ∈ EΓ∪{ f/k} (b,b′) ∈ EΓ∪{ f/k,x1,...,xk}

(letrec f/k = fun(x1, . . . ,xk)→ b in e,letrec f/k = fun(x1, . . . ,xk)→ b′ in e′) ∈ EΓ

(e1,e′1) ∈ EΓ (e2,e′2) ∈ EΓ (e3,e′3) ∈ EΓ

(if e1 then e2 else e3,if e′1 then e′2 else e′3) ∈ EΓ

4.4 CIU equivalence

Alongside proving the properties of the logical relations, we have also formalised CIU (“closed instances
of use”) preorder and equivalence [26]. Informally, two expressions are CIU-equivalent, when they both
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terminate or diverge when placed in arbitrary reduction contexts.

e1 ≤ciu e2 := ∀Fs : 〈Fs,e1〉 ⇓=⇒ 〈Fs,e2〉 ⇓ : for closed expressions

e1 ≤Γ
ciu e2 := ∀ξ : e1[ξ ]≤ciu e2[ξ ] : for closing substitutions

Practice shows, that usually proving expression CIU-equivalent is simpler than proving them contextually
equivalent [26] or related by the logical relations (it requires only one frame stack and one substitution,
rather than related pairs) [29]. After defining the CIU-preorder, we also proved its correspondence with
the logical relations (see [6]):

Theorem 3 e1 ≤Γ
ciu e2 ⇐⇒ (e1,e2) ∈ EΓ

4.5 Revisiting contextual preorder and equivalence

We formalised contextual preorder (following the idea of Wand et al. [29]) as the largest family of
relations RΓ, such that it is adequate (if (e1,e2)∈ R /0 then 〈[],e1〉 ⇓=⇒ 〈[],e2〉 ⇓), transitive and reflexive
(for every Γ), moreover satisfies the compatibility rules for expressions (for every Γ, see Thm. 2 which
is specialised for the logical relations).

We also adjusted our previous notion of contextual preorder and equivalence, and proved that it
satisfies the criteria above.

e1 ≤Γ
ctx e2 := EXP Γ ` e1∧EXP Γ ` e2∧

∀(C : Context) : EXP [] `C[e1]∧EXP [] `C[e2] =⇒ 〈[],C[e1]〉 ⇓=⇒ 〈[],C[e2]〉 ⇓
e1 ≡Γ

ctx e2 := e1 ≤Γ
ctx e2∧ e2 ≤Γ

ctx e1

After defining the contextual preorder, we started to investigate the correspondence between ≤Γ
ciu and

≤Γ
ctx. Currently, we managed to prove one direction from the equality of ≤Γ

ciu and ≤Γ
ctx (Thm. 4), and we

are working on proving the opposite one.

Theorem 4 e1 ≤Γ
ciu e2 =⇒ e1 ≤Γ

ctx e2, moreover, (e1,e2) ∈ EΓ =⇒ e1 ≤Γ
ctx e2

5 Conclusion and Future Work

In this extended abstract, we described our idea of verifying compound refactorings via decomposition
to local transformations. To reason about their correctness, we need a suitable program equivalence
definition. We investigated and formalised simple behavioural equivalence [22] in Coq. This equivalence
proved to be useful (we proved simple program patterns equivalent in our related work [1]), but not
expressive enough in case of proving function expressions equivalent (only structurally equal functions
can be proved equivalent).

To solve this issue, we formalised contextual, CIU preorder and equivalence alongside with logical
relations (following other authors [7, 23, 24, 29]). With these equivalences, we are able to prove functions
equivalent, which are not necessarily structurally equal. We presented our preliminary results (which
are also formalised in Coq [6]), which contain the equality of CIU equivalence and logical relations
alongside a number of additional theorems, and described our current work on finishing the proofs for
the equality of all the three relations. Moreover, currently we are also working on proving program
patterns equivalent.
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In the short term, we are planning on defining these equivalence relations for our entire formalisation
of Core Erlang [19], including side effects. In the medium and longer term, we plan to extend this
formalisation with concurrent language features and also formalise Erlang in full in Coq. Our longer
term goals also include the investigation of bisimulation relations for program equivalence, covering
inter alia formalised concurrent language features.
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A Scoping

We also introduce the concept of scoping for our language, following the footsteps of Wand et al. [29],
to be able to distinguish “closed” expressions (i.e. that do not contain free variables). We use EXP Γ ` e
(and VAL Γ ` v) to denote such e expressions (and values) whose free variables (and function identifiers)
are contained in Γ. The scoping rules are given in Figure 1.

VAL Γ ` l
x ∈ Γ

VAL Γ ` x

f/k ∈ Γ

VAL Γ ` f/k

EXP Γ∪{x1, . . . ,xk} ` e

VAL Γ ` fun(x1, . . . ,xk)→ e

EXP Γ∪{ f/k,x1, . . . ,xk} ` e

VAL Γ ` fun f/k(x1, . . . ,xk)→ e

VAL Γ ` e
EXP Γ ` e

EXP Γ ` e EXP Γ ` e1 · · · EXP Γ ` ek

EXP Γ ` apply e(e1, . . . ,ek)

EXP Γ ` e1 EXP Γ∪{x} ` e2

EXP Γ ` let x = e1 in e2

EXP Γ∪{ f/k,x1, . . . ,xk} ` e0 EXP Γ∪{ f/k} ` e

EXP Γ ` letrec f/k = fun(x1, . . . ,xk)→ e0in e

EXP Γ ` e1 EXP Γ ` e2

EXP Γ ` e1 + e2

EXP Γ ` e1 EXP Γ ` e2 EXP Γ ` e3

EXP Γ ` if e1 then e2 else e3

Figure 1: Scoping rules

Based on scoping, a number of useful theorems can be proven about the semantics, and expression
substitution. Substitutions can also be scoped too (based on the idea of Wand et al. [29]). The following
definition states, that every value associated with a variable (or function identifier) in Γ is scoped in ∆:

SUB Γ ` ξ :: ∆ := ∀x,x ∈ Γ⇒ VAL ∆ ` x

We highlight some theorems that have been proven in Coq [6] about the connection between substi-
tutions and scoping.

Theorem 5 (Closed expressions are not modified by substitutions) ∀e,ξ : VAL [] ` e⇒ e[ξ ] = e

Theorem 6 (Substitution preserves scoping) ∀e,Γ : EXP Γ ` e⇒∀∆,ξ : SUB Γ ` ξ :: ∆⇒ EXP ∆ ` e[ξ ]

Theorem 7 (Substitution implies scoping) ∀e,Γ,∆ : (∀ξ ,SUB Γ ` ξ :: ∆⇒ EXP ∆ ` e[ξ ])⇒ EXP Γ ` e

B Frame stack-style Termination Relation

The syntax of frames and frame stacks is the following.

F ::= apply �(e1, . . . ,ek) | apply v0(�,e2, . . . ,ek) | apply v0(v1,�,e3, . . . ,ek) |
apply v0(v1, . . . ,vk−1,�) | let x =� in e2 | �+ e2 | v1 +� | if � then e2 else e3

Fs ::= [F1, . . . ,Fn]

In Figure 2 we show the inductive, step-indexed termination relation.
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〈[],v〉 ⇓0
〈if � then e2 else e3 :: Fs,e〉 ⇓n

〈Fs,if e then e2 else e3〉 ⇓1+n

〈�+ e2 :: Fs,e〉 ⇓k

〈Fs,e+ e2〉 ⇓1+n

〈apply �(e1, . . . ,ek) :: Fs,e〉 ⇓n

〈Fs,apply e(e1, . . . ,ek)〉 ⇓1+n

〈let x =� in e2 :: Fs,e〉 ⇓n

〈Fs,let x = e in e2〉 ⇓1+n

〈Fs,e2〉 ⇓n

〈if � then e2 else e3 :: Fs,0〉 ⇓1+n

〈Fs,e3〉 ⇓n v 6= 0

〈if � then e2 else e3 :: Fs,v〉 ⇓1+n

〈v+� :: Fs,e2〉 ⇓n

〈�+ e2 :: Fs,v〉 ⇓1+n

〈Fs, l1 + l2〉 ⇓n

〈l1 +� :: Fs, l2〉 ⇓1+n

〈Fs,e2[v|x]〉 ⇓n

〈let x =� in e2 :: Fs,v〉 ⇓1+n

〈Fs,e[fun f/k(x1, . . . ,xk)→ b | f/k]〉 ⇓n

〈Fs,letrec f/k = fun(x1, . . . ,xk)→ b in e〉 ⇓1+n

〈apply v(�,e2, . . . ,ek) :: Fs,e1〉 ⇓n

〈apply �(e1, . . . ,ek) :: Fs,v〉 ⇓1+n

For empty parameter list, the following two rules need to be introduced:

〈Fs,b〉 ⇓n

〈apply �() :: Fs,fun()→ b〉 ⇓1+n

〈Fs,b[fun f/0()→ b| f/0〉 ⇓n

〈apply �() :: Fs,fun f/0()→ b〉 ⇓1+n

〈apply v(v1, . . . ,vi,�,ei+2, . . . ,ek) :: Fs,ei+1〉 ⇓n

〈apply v(v1, . . . ,vi−1,�,ei+1, . . .ek) :: Fs,vi〉 ⇓1+n

〈Fs,b[v1|x1, . . . ,vk|xk]〉 ⇓n

〈apply (fun(x1, . . . ,xk)→ b)(v1, . . . ,vk−1,�) :: Fs,vk〉 ⇓1+n

〈Fs,b[fun f/k(x1, . . . ,xk)→ b| f/k,v1|x1, . . . ,vk|xk]〉 ⇓n

〈apply (fun f/k(x1, . . . ,xk)→ b)(v1, . . . ,vk−1,�) :: Fs,vk〉 ⇓1+n

Figure 2: Step-indexed, frame stack-style termination relation
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