Complexity of Deciding Syntactic Equivalence up to
Renaming for Term Rewriting Systems

Michael Christian Fink Amores David Sabel
LUDWIG-MAXIMILIANS-UNIVERSITAT LUDWIG-MAXIMILIANS-UNIVERSITAT
Munich, Germany Munich, Germany

Michael.Fink@campus.lmu.de david.sabel@lmu.de

Inspired by questions from program transformations, eight notions of isomorphisms between term
rewriting systems are defined, analysed and classified. The notions include global isomorphisms
where the renaming of variables and / or function symbols is the same for all term rewriting rules
of the system, and local ones where a single renaming for every rule is used. The complexity of the
underlying decision problems are analysed and either shown to be efficiently solvable or proved to
be complete for the graph isomorphism complexity class.

1 Introduction

Motivation and Goals. We consider programs and programming languages and their syntax and seman-
tics. We are particularly interested in program transformation and optimization. Given a programming
language (or a representation of it, like a core language) an important question is if two programs are
equal. Clearly, there are several notions of equality. In this paper we are mainly interested in the question
that two programs are syntactically equivalent upto a renaming of variable names and function names.
However, an exact definition of such an equality depends on the concrete application.

For instance, one application is to decide whether the transformation “common subexpression elimi-
nation” is applicable, which identifies duplicated (i.e. equal) code and shares it. Another application is to
identify equal programs in example data bases that are used for tests, benchmarks and competitions. Hav-
ing duplicated problems in the problem set (without knowing it) can distort benchmark and competition
results. For term rewriting systems (TRSs, for short), a further application is Knuth-Bendix-completion
where new rewriting rules are added during the completion procedure, here one has to check whether the
new rules are really new ones or whether they are already present in the system (perhaps with variables
renamed, but in this application renaming of function symbols is not requested).

We consider TRSs, since they are a well-studied formalism to represent computations and programs
(e.g., they are used as target language for showing termination of real programs [3} 5]). Our goal is to
take into account different notions of “syntactic equivalence up to renaming” for TRSs, to compare and
classify them, and to analyse their complexity as a decision problem. We want to cover such equivalences
that allow to rename only the names of formal parameters (i.e. the variables of the TRSs) or also the
names of functions or data (i.e. the function symbols of the TRSs). A further distinction is whether the
renaming must be done globally for the whole TRS, or locally on a rule by rule basis.

Results. We introduce our notions of equality by considering isomorphisms between TRSs. The different
notions stem from whether variables and function symbols are renamed globally, locally for each rule
of the TRS, or not at all. We analyze the relation between the eight notions resulting in a hierarchy of
equivalence notions (Proposition [2.7). We show that three (local) equivalence notions can be solved in
polynomial time (Theorem [3.3)) and thus their decision problems are in P. The other five equivalence

© M. C. Fink Amores & D. Sabel
WPTE 2021 informal proceedings This work is licensed under the
Creative Commons Attribution License.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Complexity of Deciding Syntactic Equivalence up to Renaming for Term Rewriting Systems

notions are shown to be GI-complete (Theorem [{.T)), where GI is the complexity class corresponding to
the graph isomorphism problem.

Related work. Several isomorphism problems in this paper are shown to be graph-isomorphism-complete
(GI-complete). For the graph-isomorphism problem as a complexity class GI, it is known that P C GI C
NP holds, but it is unknown for both C-relations whether they are strict. Proving GI-completeness of
a problem indicates hardness of the problem and that there is no known polynomial time algorithm for
it. Details on the complexity class GI can, for instance, be found in [10, [7], a recent overview from a
theoretical and a practical perspective on the graph isomorphism problem is given in [6]. Several related
problems are shown to be GI-complete in [2} [11].

A related problem to equality of TRSs is equality of terms and expressions in languages. In [[1] term
equality including associative-commutative operators is shown to be GI-complete, but equality of TRSs
is not considered. However, one may use the result to show that equivalence of TRS is in GI by encoding
the given TRSs into single big terms with associative-commutative operators. However, for GI-hardness
an encoding in the other direction would be required, which seems to be non-trivial. Thus, we decided
to use other decision problems to prove our GI-completeness results.

In [9] the complexity of a-equivalence in lambda-calculi with letrec-bindings was analysed and
shown to be GI-complete. Compared to this work, we consider and classify different notions of syntactic
equivalence, we do not consider a letrec-construct (however, the sets of rules in TRSs behave similar to
sets of letrec-bindings) and also no higher-order syntax (we only consider first-order terms).

Our proof method for showing that equalities based on so-called local renamings is known as the

template-method which was used before in [[8] where structural homomorphisms for context-free (and
regular) grammars where analysed and shown to be in P or GI- or NP-complete.
Outline. In Section 2 we introduce various types of isomorphisms on TRSs, Section [3]shows polynomial
solvability of local isomorphisms, Section @] compares TRS isomorphism to isomorphism on respective
tree encodings and proves GI-completeness of global isomorphisms. We conclude in Section[5} Due to
space limits, several proofs are omitted. They can be found in an extended version of this paper [4]].

2 Term Rewriting Systems and Structural Isomorphisms

In this section we recall the required notion on term rewriting and we define and discuss different notions
of equality between term rewriting systems by defining several notions of isomorphisms between them.

We define terms as follows, where we — unlike other definitions — also allow the set of variables to be
finite. This will be helpful when treating the concrete terms that (syntactically) appear as left and right
hand sides in term rewriting rules. Let .# be a finite set of function symbols where each f € .% has a fixed
arity ar(f) € No. Let ¥ be a disjoint, finite or countably infinite set of variables. Terms T (F,V ,ar)
(over function symbols .# and variables ¥') are inductively defined by: x € ¥ is a term, any constant
(i.e. f€ 7, withar(f)=0)isaterm, and ift|,... typ) €T(F, ¥ ,ar) then f(t1,. .. typ)) €T (F, YV ,ar).
For convenience, we sometimes omit ar and simply write T'(%#, 7).

We use letters c,d, . .. for constants, letters f, g, A, ... for arbitrary functions symbols, and letters x, y, z
for variables. For a term ¢, we use Var(#) to denote the variables occurring in ¢ and Func(z) to denote the
function symbols occurring in ¢. For convenience, we assume that the set of variables in a term rewriting
system is finite. This will ease notation, when we define mappings between them. A term rewriting
system (TRS) over terms T'(.%,¥") (where ¥ is finite) is a finite set Z of rules Z = {{; = r1,..., by — 1y}
where (;,r; € T(.%,7) are terms, ¢; is not a variable, and Var(r;) C Var(¢;). We write R = (%, 7, %)
for a TRS to make the function symbols and the set of variables explicit.

M. C. Fink Amores & D. Sabel 3

For functions f : A — B we also use its extension to sets f(X) = {f(x) :x € X} where X C A. For
X C A, we denote the restriction of f to set X with X|¢. With {a; — by,...,a, — b, } we denote the map
f:{ai,...,an} — {b1,...,b,} mapping a; onto b;. Moreover, if A and B are disjoint sets, f : A — C and
g : B— D maps defined on these sets, let fL1g: AUB — CUD be the unique map so that (fLIg)|a = f
and (fLUg)|p = g. This can be generalised to arbitrary many, pairwise disjoint, sets and is the preferred
notation to denote finite mappings.

Example 2.1. Let % = {f,h,g,c}, ¥ = {x,y} and ar = {c— 0,g— 1,h— 1, f — 2}. Exemplary
rewriting rules over T(.%, 7 ,ar) are h(y) — f(c,y), f(g(x),y) — g(x), h(g(x)) — g(x) or h(y) — c.
Note that we have a total of three conditions: (1) Left and right side of a rule have to be valid terms,
(2) the left side is not allowed to be a single variable, (3) the right side does not introduce new variable.
Then for example, f(x) — ¢ violates (1), x — h(x) violates (2) and g(x) — h(y) violates (3).

To model local remapping of rules, i.e. renaming symbols on a per rule basis, we introduce so-called
term homomorphisms, which allow us to transform underlying term sets.

Definition 2.2 (Term Homomorphism). A term homomorphism between two term sets 7 (%, #1,ar;)
and T'(F,, ¥5,arp) is abijective map ¢ : (F1UY]) — (F,U¥3), such that ¢ (#7) = ¥ (and automatically
0(F1) = %) and ar(f) = ara(@(f)) for every f € %, canonically extended to all terms 7' (.%1,¥1)
via @(f(t1,.-sta(p)) = O(F)(O(t1),- -9 (tur(r))). Homomorphism ¢ is ¥ -invariant if ¥ = ¥, and
¢|y; = idy;, and analogously . -invariant if %, = %, and §|z, =idz,.

Now we can specify certain normal forms of TRSs by prohibiting “equivalent” rewriting rules, based
on manipulation by term homomorphisms.

Definition 2.3 (Equivalence of Rewriting Rules, Normal Forms). Let R = (%, %, %) be a TRS. R is in
(V' -/.F -)normal form, if we cannot find distinct rewriting rules £ — r,{' — ¥’ € % and (% -/ -invariant)
term homomorphism ¢ : (Z U¥) — (FUY) with ¢(£) — ¢(r) = ¢ — r'. Otherwise we call £ — r and
' — ¥ (V-/.F -)equivalent. Clearly a TRS in normal form is already in ¥'-/.% -normal form.

Example 2.4 (Cont. of Example[2.1). Both ¢, = {x = y,y+—>x,c—>c,g+> g h— h,f— f} and ¢ =
{x =>x,y—y,crc,h— g,g— h, f+— f} are valid term homomorphisms on T'(.%, %) itself, with the
former being .7 -invariant and the latter ¥ -invariant. Moreover, for Z = { f (g(x),y) — h(x), f(h(x),y) —
8(x), f(8(y),x) = h(y)}, Z is neither in #'-normal form, ¢ (f(g(x),y)) = ¢1(h(x)) = f(8(y),x) = h(y)
(f(g(x),y) = h(x) and f(g(y),x) — h(y) are ¥ -equivalent), nor in .%-normal form, ¢»(f(g(x),y)) —
$2(h(x)) = f(h(x),y) = 8(x) (f(g(x),y) = h(x) and f(h(x),y) — g(x) are .7 -equivalent).

We define notions of isomorphism between TRSs together with the equivalences induced by the term
homomorphisms. Variables and function symbols can each be renamed locally, globally, or not at all,
resulting in total of eight non-trivial, distinct isomorphism types, after combining all possibilities. Global
renaming requires a common symbol-mapping applied to the whole rule set, while local renaming allows
separate symbol-mappings for each rule in the set. For global isomorphisms we define variants that
require the term homomorphisms to be .% - or # -invariant, resp. for the local ones, we define variants,
where all local mappings have something in common, e.g. mappings that have a common renaming on
the variables, or mappings that have a common renaming on the function symbols.

Definition 2.5 (TRS Isomorphisms). Let R; = (%, ¥;,%;) for i = 1,2 be TRSs. Then R; and R, are
globally isomorphic, in terms R; g Ry, if we find a term homomorphism ¢ : (.71 U %) — (F2 U %3)
with ¢(Z%1) :={9(l) = ¢(r) : L = r € %} = %>. Map ¢ is then called a global TRS isomorphism.
(a) If ¢ is F-invariant, we say that Ry and R, are ¥ -globally isomorphic, Ry Zgvg R, and call ¢ a
¥V -global TRS isomorphism.

4 Complexity of Deciding Syntactic Equivalence up to Renaming for Term Rewriting Systems
Isomorphism | ¥ -inv. | ¥ -global | ¥ -local | .%-inv. | .%-global | .%-local | Requ. normal form

GE v v

GVE v v

GFE v v

VSE v v & -normal form
FSE v v ¥ -normal form
LE v v normal form

LVE v v ¥ -normal form

LFE v v & -normal form

Table 1: Comparison of TRS isomorphisms

(b) If ¢ is ¥ -invariant, we say that R and R, are .#-globally isomorphic, Ry Zgyg R2, and call ¢ a
F -global TRS isomorphism.

R and R, are locally isomorphic, in terms R| =1 g R», if they are in normal form and there are term
homomorphisms ¢;, | <i<n=|%|, suchthat ¢(Z1) ={d1(1) = ¢1(r1),...,0u(ln) = On(rn)} = %2,
where ¢;: (Z1UY]) — (FU %) and ¢ = (¢@y,...,¢,) denotes the family of such term homomorphisms.
Family ¢ is then called a local TRS isomorphism.

(c) If Ry and R, are in .% -normal form and additionally ¢; |y, = ... = @,|y;, we say that R| and R, are
¥ -standard isomorphic, R| Zysg R», and call ¢ a ¥ -standard isomorphism.

(d) If Ry and R; are in #'-normal form and additionally ¢ |z, = ... = ¢,|#,, we say that R and R, are
F -standard isomorphic, Ry Zygsg Ry, and call ¢ a . -standard isomorphism.

(e) R; and R; are called ¥ -locally isomorphic, Ry =1 yg Ra, if R1 Zgsg R» and the ¢;’s are % -invariant.
We then call ¢ a ¥ '-local isomorphism.

(f) Ry and R; are called .% -locally isomorphic, Ry =g Rz, if R| Z2ysg Rz and the ¢;’s are ¥ -invariant.
We then call ¢ an .# -local isomorphism.

A summary concerning all types of TRS isomorphism can be found in Table [I] By extending global
isomorphisms to constant families, =g, Zgrg and =gvg can be understood as special cases of = g.
This is in particular of good use, when composing different types of TRS isomorphisms.

Normal forms are helpful and were introduced in the first place, since they prevent “shrinking” of
rewriting rule sets and ensure symmetry and transitivity of the isomorphism-relation. Consider rewriting
rule sets Z; = {f(x) = ¢,g(x) = d,g(c) — d} and %, = {f(x) = d,g(c) — d}, where the rewriting
rules f(x) — ¢, g(x) — d and f(x) — d are .%-equivalent. The induced TRSs R; = (.%;, ¥;,%;) are .7 -
locally isomorphic in just one direction, i.e. one finds .%# -invariant term homomorphisms ¢ = (¢;, @2, ¢3)
such that ¢ (%)) = %», but not the other way around due to incompatible cardinalities of said rule sets.

Lemma 2.6. Every binary relation ~, defined by Ry ~ Ry iff R\ and Ry are (V- -)locally / globally /
standard isomorphic TRSs, is an equivalence relation.

Proposition 2.7. By definition . -invariance implies .7 -globality implies ¥ -locality and V -invariance
implies V' -globality implies V -locality, and thus the following (strict) implications hold:

GFE

=
T vsE

GVE

—
FSE &

LFE GE LVE

M\
W/

LE

M. C. Fink Amores & D. Sabel 5

Application and usefulness of the presented TRS isomorphisms may vary, e.g. let R = (F,{x,y}, %)
where .# = {c,s,f} and R = {f(c,x) — x, f(s(x),y) — s(f(x,y))}. This system can be interpreted
as single recursive definition of addition on natural numbers by add(0,m) = m and add(succ(n),m) =
succ(add(n,m)). Introducing .#’' = {0, succ,add} and ¥’ = {n,m} as new function symbol/variable sets,
our initial TRS is .% -standard isomorphic to new TRS R' = (%', V', %") where #' = {add(0,m) — m,
add(succ(n),m) — succ(add(n,m))}, courtesy of ¢; = {c+ 0,s > succ, f — add,x — m,y — n} and
¢, = {c— 0,5 — succ, f — add,x — n,y — m}. Important to note is that our interpretation only holds,
if we (explicitly via term homomorphisms or not) rename f globally, i.e. the f in the second rule has to
refer to the same function as in the first. This directly corresponds to our naive conception of terms, where
functions are seen as global quantities, while variables are treated as local placeholders. In this sense,
Z -standard isomorphism is rightly named as the in practice most important type of TRS isomorphism.
Efficiently implemented algorithms could aid in (sophisticated) common subexpression elimination by
checking if selected code-blocks are .%-standard isomorphic, i.e. if they offer the same functionality
after suitable renaming of functions or methods. In Knuth-Bendix-completion one compares single rules
without renaming of function symbols. Thus, =Zpyg (on singleton TRSs) is the right equality notion.

3 Local TRS Isomorphisms are in P

We state two explicit polynomial time algorithms which solve LVE, LFE, LE, and later serve to justify
polynomial reductions from FSE to GFE and VSE to GVE. This method is known as the template-
method (an example concerning structural isomorphisms on context-free grammars can be found in [8]])
and involves canonical renaming of variables or function symbols or both on a per rule basis, depending
on the type of local isomorphism.

Lemma 3.1. Every TRS R = (%, ¥V, %) can be brought into a so-called maximal (¥ -/ -)normal form
R =(F, V%) Le., Z C % and for every #' C X#" C %, (F,V ,#") is not in (V-/.F -)normal form.
This (V -/ -)normal form is unique up to (V' -/.F -)equivalence of rewriting rules and can be constructed
in polynomial time.

Proof. Let R = (%, V , %) be a TRS, # = {{; = r1,...,ln — 1y}, and fix 1 < j <n. Set V5=
{x1,...,xx}, K= 7], and Fg = {fxs: 1 € L,1 <k < p;}, where L= {ar(f): fe F}, pp=|{f €
F rar(f) =1}| and | Fs| = |.F|. We call ¥5 the standardised variable set and Fs the standardised
function symbol set of R. For % and ¥ from Example this results in .Fs = { fi 0, fi.1, f2.1, f1,3} and
¥s = {x1,x2}. We define a local remapping ¢; : (# U¥') — (% U ¥5) of variables the following way:
Consider ¢; and replace each occurrence of a variable with x;, where x; refers to the kth distinct variable
in ¢;. Since Var(r;) C Var(¢;) this is already sufficient to state an .#-invariant term homomorphism.
Analogously, rename function symbols locally via ¢} : (F U¥') — (FsU¥) by replacing each occur-
rence of a function symbol with f;, where f;; is the kth distinct function symbol in £;r; of arity I (k
depends on /), resulting in a ¥ -invariant term homomorphism. Moreover, assign ¢y = (¢,...,¢,) and
07 = (9{,...,9,). Refer to Algorithms [I|and [2] for implementations. Both TRS isomorphisms ¢y and
¢7 can be computed in at worst O'(s|Z||7'||.-Z |log(| ¥ ||-#])) by linearly parsing over every rewriting
rule. We call ¢;(¢;) — @i(r;) the ¥ -template and ¢/ (¢;) — ¢/ (r;) the .Z -template of rewriting rule ¢; — r;.

Before we proceed with the proof, a quick example: Recall Example The ¥ -template of
f(g(x),y) = h(x) is f(g(x1),x2) — h(x1) and the .Z-template is fi 2(f1,1(x),y) = f2,1(x). Extend this
to rule set Z = {f(g(x),y) — h(x),g(f(x,y)) — c¢}. Now we see why double indices in the functions
symbol set are needed to ensure consistent arity. Renaming function symbols in the same pattern as vari-
ables would yield templates {f;(f2(x),y) — f3(x), fi1(f2(x,y)) — f3} which can not be constructed out

6 Complexity of Deciding Syntactic Equivalence up to Renaming for Term Rewriting Systems

Algorithm 1: Computation of ¥ '-template

input :TRSR= (7,7 ,ar,%Z) where Z = {l; = ri,.... 0, — 1}

output : ¢y = (¢1,...,¢,) family of . -invariant term homomorphisms, canonical renaming of

variables on a per rule basis

runtime: O (s|Z ||V ||-F |log(| V' ||.-Z]))

Initialise new variable set ¥ < {x1,..., Xy}

for j+ 1tondo /! O(s|Z|log|¥|)
Initialise partial map ¢; : F UY — .F U5
Letyi...ym={; € (FUY)* // store terms without symbols (,), ,

Setk <+ 1
fori<—1tomdo // rename variables from left to right // O(slog|¥|)
if v, € ¥ and ¢;(;) undefined then // O(log|?])
Setd)j(}/i)%xk
k< k+1
// extend ¢; to all of FUY
for x € 7 do /1 O(|7[log|7])
if ¢;(x) undefined then // O(log|7])
Set (Pj(x) — Xg
k< k+1
for f € .7 do Set ¢;(f) « f /1 O(|F|log|F])

return ¢y = (@1,...,0,)

of one singular term set due to both f; and f, appearing with arity 1 and 2. Moreover, it is not sufficient
to just trivially increase the first index, i.e. remapping f(g(x),y) — h(x) to fi2(f2.1(x),y) = f3.1(x).
The resulting template set would be { f12(f2,1(x),y) = f3,1(x), fi,1(f22(x,y)) = f3,0}. which requires an
underlying function symbol set of atleast order six, namely {fi 1, f1.2, /2.1, f2.2, /3.0, f3.1 }- This prevents
bijectivity of ¢ J’-’s, and thus them being well-defined term homomorphisms.

We consider ¥ -normal forms and ¥ -templates (the .% -case is analogous). ¥ -equivalence of distinct
rewriting rules £ — r,¢' — 1 is equivalent to ¥ -local isomorphism of corresponding singleton rule sets
{¢ — r} and {¢' — r'}. Corresponding equivalence classes can be determined once we have ¢y, since
by Lemma 2.6} [(; — ri] = {{; = rj € Z : ¢i(L;) = ¢i(ri) = ¢;(£;) = ¢;(r;)}. Thus, ¢y (Z) directly
implies a partitioning of & into 1 < m < n sets of rewriting rules of the same # -template. Then every
representation system %' = {{;, — ri,,...,¢;, — r;, } of this equivalence relation is already in maximal
#-normal form. In the case of normal forms, consider ¥ = (y1,...,¥,), ¥; = (9| 7 Uidy) o ¢;, well-
defined due to .# -invariance of ¢; for each 1 <i <n. We call y;(¢;) — y;(r;) the template of rewriting
rule ¢; — r; € Z. We sequentially apply Algorithms [I]and 2] i.e. we take the maximal .% -normal form
of the maximal #'-normal form of R. The claim then follows by the same reasoning as above. O

The notion of (¥-/.%-)template is extended to all of TRS R, yielding new TRSs by collecting
(V'-1.7 -)template sets and (possibly) standardised symbol sets. We immediately conclude:
Corollary 3.2. A TRS R in (V' -/.% -)normal form is (V -/F -)locally isomorphic to its (V' -/.F -)template.
Moreover, as direct consequence of Lemma two TRSs Ry and R, in (V' -/.% -)normal form are (V' -
/% -)locally isomorphic iff they have the same (V-/.% -)template, after possibly artificially extending
variable/function to ensure one-to-one correspondences.

M. C. Fink Amores & D. Sabel 7

Algorithm 2: Computation of .% -template
input :TRSR= (7,7 ,ar,%Z) where Z = {l; = ri,.... 0, — 1}
output : ¢z = (9{,...,¢,) family of ¥ -invariant term homomorphisms, canonical renaming of

function symbols on a per rule basis
runtime: O(s|Z|| 7 ||.Z |log(|V||-Z]))

for/ e {ar(f): fe.Z}do letp, <0 /! O(|.F|log|Z|)
Initialise new function symbol set .Fg < 0
for j < 1 tondo /! O(s|%|log|.F])

Initialise partial map ¢ : FZ U7 — FsU ¥V
Letyi...Ym=4{jrj € (FUY)* // store terms without symbols (,), ,

for i+ 1 tomdo // rename function symbols // O(slog|Z|)
if v € F and ¢}(v:) undefined then
Let [< ar(y;) // O(log|#|)

Set p; < pr+1
Set f}\S — 95 @] {fp,,l}

Set ¢:(%1) < fp.1 // O(log|.Z))
// extend ¢ to all of FUY
for f € .Z do /1 O(|F|log|F])
if ¢7(f) undefined then
Let [< ar(f) /1 O(log|Z|)
Setp; < pi+1
Set Fg +— FgU {fphl}
|| Set@i(%) < fp // O(log|.Z))
for x € 7" do Set ¢}(x) < x // O(|Y|log|?])

return ¢z = (9{,...,9,)

The last assumption ensures intended isomorphism despite ill-defined symbol sets, which are needed
to ensure rigorous mathematical modelling and are often defined in retrospective after stating a consistent
system of rewriting rules. Consider rewriting rules %, = { f(x) — ¢, f(x) — h(x)} and %» = {f(x) —
¢,g(x) — h(x)}, implicitly extended to TRSs R; = (-%;, ¥;, %;). Clearly, both posses the same .7 -template
set { f1.1(x) = fi.0,f1,1(x) = f2.1(x)}, but we cannot find valid term homomorphisms on underlying term
sets T'(F1,71) and T(:F,, ¥3), since .# = {f,h} and .%, = {f,g,h} do not have the same number of
function symbols. This is no problem however, we just artificially extend .%#; by one unary “dummy”
function symbol fi ;. This procedure can be generalised to handle arbitrary TRSs as long as they posses
the same % -template sets, simply by comparing the standardised function symbol sets (which can be
done in polynomial time). The same concept also holds for (¥ -local) templates. Now we are equipped
to prove the initial statement from the start of the section.

Theorem 3.3 (Local TRS Isomorphisms are in P). Isomorphism LE, LVE and LFE can be decided in
polynomial time.

Proof. We only consider the case of LE, the other cases are shown analogously. By Corollary [3.2] two
TRSs R; and R; in normal form are locally isomorphic iff their templates R and R}, are the same. But
this is already the case iff the sets of rewriting rules of R| and R} are the same. Both, construction

8 Complexity of Deciding Syntactic Equivalence up to Renaming for Term Rewriting Systems

of templates and verification of set equality can be done in polynomial time, with latter being possible
in at most most &'(syn;logn; + spnylogny), where n; = |%;| is the number of rewriting rules and s; =
max{|lr| : { — r € %;} is an upper bound on the length of rules in R;, i = 1,2. O

4 GI-Completeness of Global TRS Isomorphisms

Global, non-invariant, renaming of atleast one symbol set, immediately results in GI-completeness of
the corresponding TRS isomorphism-decision problem:

Theorem 4.1 (GI-Completeness of Global TRS Isomorphisms). The following sets are polynomially
equivalent:

(i) GI={(Gy,G,) : G1,G, isomorphic graphs}

(ii) GVE = {(R1,R2) : R1,R, ¥ -globally isomorphic TRS}
(iii) GFE = {(Ry,R,) : R|,Ry .Z -globally isomorphic TRS}
(iv) GE={(R1,R2) : R1,Ry globally isomorphic TRS}

(v) FSE = {(R1,R2) : R1,Ry .7 -standard isomorphic TRS}
(vi) VSE = {(R1,R) : R|,R, V -standard isomorphic TRS}

To prove Theorem 4.1 we discuss an encoding from TRSs into forests of ordered, labelled directed
trees. For the rest of the paper, assume .% U and NgoU{H,Z, T, F,C} to be disjoint (symbol) sets.

Our graph model of choice is the following: A labelled directed graph (LDG) is a tuple G =
(V,E,L,1ab), where V is a finite set of vertices, E C V x V x L are directed labelled edges between
vertices, L is a finite set of labels, and lab : V — L is a labelling function. Vertex v € V is called a root, if
it has no incoming edges. Graph G is called connected, if we can find a path between any two vertices in
the undirected graph corresponding to G. Vertex v € V is called initial, if every other node w € V \ {v}
is reachable from v. We call G rooted, if G is connected and has an unique, initial root. If additionally
there is at most one path between any two vertices in G, then G is a tree. Two LDGs G; = (V;, E;, L;,1ab;)
are isomorphic w.r.t. one-to-one correspondence ¥ : L1 — Ly, G| = G, (y is suppressed), if we find a
bijection ¢ : V; — V; such that adjacency and label-equivalence classes are preserved, i.e. (v,w,l) € Ej iff
(0(v),0(w),y(l)) € Ea, and y(lab;(v)) =laby(¢(v)) for v € Vi. Map ¢ is called a graph isomorphism.
If both label sets agree and y can be chosen as identity between them, we call G| and G, strongly iso-
morphic, G| =g G, and ¢ a strong graph isomorphism. In this case, we omit y entirely in our notation.

We can canonically encode a term into a tree by respecting the term structure. For example, f(x,y) is
a tree with f-labelled root and two child-vertices, labelled with x and y respectively. However, the order
of arguments is of utmost importance, since function symbols are ranked (we do not want to treat terms
f(x,y) and f(y,x) as isomorphic). That is why we use OOLDG-trees: An outgoing-ordered labelled
directed graph (OOLDG) [9]] is a special case of an LDG, where edge-labels of outgoing edges are
unique, i.e. if (w,v,1), (w,V',[) are included edges, then already v = V. In essence, we identify TRSs by a
forest of unconnected OOLDG-trees with uniquely numbered edges, where every connected component
directly corresponds to a single rewriting rule. Dependent on the type of TRS isomorphism, we modify
this forest by adding additional vertices and edges or replacing labels. Of particular interest are GFE,
GVE and GE, where, for the former, we explicitly state such a polynomial reduction into OOLDGs. The
remaining isomorphisms can then be reduced to those three cases, saving unnecessary constructions.

We use the following construction: Suppose Ti,...,7T, are OOLDG-trees with distinct (labelled)
roots vy, ..., v,. Graph Join(v,l, T1,...,T,) is the OOLDG-tree with [-labelled root v and ordered subtrees
Ti,...,T,, i.e. extend the union of 7i,...,T, to a new OOLDG-tree by introducing new edges (v,v;,i),

M. C. Fink Amores & D. Sabel 9

Figure 1: Visualisation of Join(v,/,Ty,...,T,) Figure 2: Term tree Tree(f(h(x,y),x) — h(x,y))

1 <i<n. An example is in Fig. |1l For a term t € T(.%, %), its term tree Tree(t) is an OOLDG-
tree, inductively defined by: If t =x orz = c for x € ¥ or ¢ € .%, then Tree(r) is a single vertex with
respective label. If ¢ = f(t1,...,ty(p)) for f € F and terms t1,...,t,p) € T(F, V), then Tree(t) =
Join(v, f,Tree(t1),. .., Tree(ty(s))), where v is a fresh vertex (see Fig. 2| for an example). For a rewriting
rule £ — r, we generalise the definition to Tree(¢ — r) = Join([¢ — r|, T, Tree(¢), Tree(r)), where [¢ — r]
is a fresh T-labelled root. For a TRS R = (%, 7, %), we call G(R) = ;_,,c4 Tree({ — r), the TRS-
forest of R. It can be constructed in time &'(s|%|), where s is an upper bound on the length of rewriting
rules, if we, for example, use doubly linked lists by linearly parsing each rewriting rule ¢ — r.

The following lemma highlights the correlation between (global) isomorphism of TRSs and isomor-
phism between corresponding TRS-forests.

Lemma 4.2. Let R,R, be two TRSs and consider the following two statements:
(i) Ry and Ry are (V -/.F -)globally isomorphic. (ii) G(R1) and G(R») are isomorphic.

(i) = (ii) always holds. The reverse implication is true if edge-labels are invariant and the symbol-
relationship is preserved, i.e. if G(R1) and G(R3) are isomorphic w.r.t. W : Ly — Ly, then y|y = idy and
v(N) =Y (and w(F) = F,) (for V -/.F -global isomorphism, we demand to be invariant on F/V').

The proof of Theoremd.I|follows by a series of polynomial reductions, and is schematically depicted
in Fig. 3|where arrows L; = L, mean that there is a polynomial reduction from L; to Ly, L, <Pr,.

(vi) VSE == (ii) GVE (iii) GFE (v) FSE

(i)ﬂGI —

Figure 3: Proof of Theorem

(iv) GE

Reductions GVE <P GI, GFE <? GI and GE <? GI follow the same basic pattern. The TRS-forest
G(R) of given TRS R, is transformed into a new OOLDG, referencing vertex-labels by introducing
uniquely identifiable pointer-vertices, which represent, possibly different, classes of symbols. Strong
isomorphism on these newly generated OOLDGs is then equivalent to isomorphism on initial TRS-
forests, with additional constraints mirroring requirements of the reverse implication in Lemma [4.2]
This in turn equals (% -/# -)global isomorphism on underlying TRSs, depending on the chosen encoding.
Below an example encoding for the case GFE <P GI. Other cases follows analogously.

10 Complexity of Deciding Syntactic Equivalence up to Renaming for Term Rewriting Systems

Figure 4: Example of encoding Graph z (R) for TRS % = { f(h(x,y),x) — h(x,y),h(y,x) = f(x,y)}

Example 4.3. Consider a TRS R based on rewriting rule set { f(h(x,y),x) — h(x,y),h(y,x) — f(x,y)}.
For each appearing function symbol (here: f,4) introduce a fresh F-labelled vertex. Encode function
symbol labels by edges, pointing to corresponding function-vertex, after replacing them with (global)
uniform label 0. Refer to Fig. 4, By decoding the so generated OOLDG Graph z(R), we extract that our
TRS consists exactly of rewriting rules of the form CJ(M(x,y),x) — B(x,y) and B(y,x) — O(x,y), where
(] and M are distinct (global) placeholders for functions, while variables x, y are explicitly used. This can
be generalised, i.e. TRSs R; and R, are .% -globally isomorphic iff Graph z(R|) =5 Graph z(R»).
Regarding FSE <? GFE: Two TRS (.%;, %,%;) , i = 1,2, in ¥ -normal form are .%-standard iso-
morphic iff their ¥ -templates (%, (%)S, ¢+ (%)), i = 1,2 are .% -global isomorphic. Instead of handling
local variable renaming by an .% -standard isomorphism, we rename variables canonically, according to
the .% -template algorithm. Existence of appropriate term homomorphisms guarantees that in both cases
both 7 -templates posses the same standardised variable set, i.e. the following diagram is commutative:

¢ .7 -standard isomorphism

(glvfy/lﬂ%l) (9257/27%2)

—1)+ —1 (/s
%/' Tl‘l’/fl ¢’ .Z-global isomorphism %/2 Tl%z
(Z1,(N)s, 9% (%)) (Z2,(#2)s, 9 (%2))

Recall the TRS-addition example at the end of Section[2]and consider ¥ -template rule sets {add(0,x;) —
x1, add(succ(xy),x2) — succ(add(xy,x2))}, {f(c,x1) = x1, f(s(x1),x2) — s(f(x1,x2))}. Now the re-
striction of ¢ to .#, i.e. ¢ = {c — 0,5 — succ, f — add} can naturally be extended to an .%-global
isomorphism between ¥ -templates of % and %’. Reduction VSE <¥ GVE applies the same concept,
just switch notions of .# -standard/global isomorphism and ¥ -standard/global isomorphism.

5 Conclusion

We introduced eight notions of syntactic equality up to renaming of function symbols and/or variables for
TRSs. We have shown for each of them that they are either efficiently decidable or they are GI-complete.
This clarifies the complexity of the equalities. Instead of explicitly stating graph encodings for every
global isomorphism case, we took advantage of the general structure of TRSs in form of templates and,
in particular the relationship between variables and function symbols. Presented template-generating-
algorithms can easily be generalised to handle more than two disjoint symbol sets and can then be applied
for reductions or polynomial solvability proofs in the context of of new isomorphisms if they demand
symbol-relationship to be preserved. In fact, we saw that under canonical remapping of symbols, proof
of local isomorphisms reduces to simple set comparison. Runtime of those algorithms can be greatly
improved by choice of of more appropriate data structures.

M. C. Fink Amores & D. Sabel 11

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

David A. Basin (1994): A term equality problem equivalent to graph isomorphism. Information Processing
Letters 51(2), pp. 61-66, doi:https://doi.org/10.1016/0020-0190(94)00084-0.

Kellogg S. Booth & Charles J. Colbourn (1979): Problems polynomially equivalent to graph isomorphism.
Technical Report CS-77-04, University of Waterloo. Available athttps://cs.uwaterloo.ca/research/
tr/1977/CS-77-04 . pdf.

Marc Brockschmidt, Richard Musiol, Carsten Otto & Jiirgen Giesl (2012): Automated Termination Proofs for
Java Programs with Cyclic Data. In P. Madhusudan & Sanjit A. Seshia, editors: Computer Aided Verification
- 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, Lecture Notes
in Computer Science 7358, Springer, pp. 105-122, doi:10.1007/978-3-642-31424-7_13.

Michael Christian Fink Amores & David Sabel (2021): Complexity of Deciding Syntactic Equivalence up
to Renaming for Term Rewriting Systems (Extended Version). CoRR abs/2106.13520. Available at https:
//arxiv.org/abs/2106.13520.

Jiirgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan Swiderski & René Thiemann (2011):
Automated termination proofs for haskell by term rewriting. ACM Trans. Program. Lang. Syst. 33(2), pp.
7:1-7:39, doi;10.1145/1890028.1890030.

Martin Grohe & Pascal Schweitzer (2020): The Graph Isomorphism Problem. Commun. ACM 63(11), p.
128-134, doi:10.1145/3372123.

Johannes Kobler, Uwe Schoning & Jacobo Toran (1992): Graph Isomorphism is Low for PP. Comput.
Complex. 2, pp. 301-330, doi:10.1007/BF01200427,

Daniel J. Rosenkrantz & Harry B. Hunt III (1985): Testing for Grammatical Coverings. Theor. Comput. Sci.
38, pp. 323-341, doi:10.1016/0304-3975(85)90226-9.

Manfred Schmidt-Schauf3, Conrad Rau & David Sabel (2013): Algorithms for Extended Alpha-Equivalence
and Complexity. In Femke van Raamsdonk, editor: 24th International Conference on Rewriting Techniques
and Applications, RTA 2013, June 24-26, 2013, Eindhoven, The Netherlands, LIPIcs 21, Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, pp. 255-270, doi310.4230/LIPIcs.RTA.2013.255|

Uwe Schoning (1988): Graph Isomorphism is in the Low Hierarchy. J. Comput. Syst. Sci. 37(3), pp. 312—
323, doi;10.1016/0022-0000(88)90010-4.

Viktor N. Zemlyachenko, Nickolai M. Korneenko & Regina I. Tyshkevich (1985): Graph isomorphism prob-
lem. J. Math. Sci. (N. Y.) 29, pp. 1426-1481, doi;10.1007/BF02104746\

http://dx.doi.org/https://doi.org/10.1016/0020-0190(94)00084-0
https://cs.uwaterloo.ca/research/tr/1977/CS-77-04.pdf
https://cs.uwaterloo.ca/research/tr/1977/CS-77-04.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_13
https://arxiv.org/abs/2106.13520
https://arxiv.org/abs/2106.13520
http://dx.doi.org/10.1145/1890028.1890030
http://dx.doi.org/10.1145/3372123
http://dx.doi.org/10.1007/BF01200427
http://dx.doi.org/10.1016/0304-3975(85)90226-9
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.255
http://dx.doi.org/10.1016/0022-0000(88)90010-4
http://dx.doi.org/10.1007/BF02104746

	Introduction
	Term Rewriting Systems and Structural Isomorphisms
	Local TRS Isomorphisms are in P
	GI-Completeness of Global TRS Isomorphisms
	Conclusion

