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We propose an operationally-based framework for deductive proofs of program equivalence. It is
based on encoding the language semantics as logically constrained term rewriting systems (LCTRSs)
and the two programs as terms. Our method requires an extension of standard LCTRSs with axiom-
atized symbols. We also present a prototype implementation that proves the feasibility our approach.

1 Introduction: Language Semantics as LCTRSs

An LCTRS consists of rewrite rules of the form l −→ r if φ , where l,r are terms and φ is a first-order
constraint. The reduction relation −→ induced by an LCTRS can define the transition relation modeling
the operational semantics of programming languages: P−→Q iff the program configuration P steps into
program configuration Q.

We feature a running example with an imperative language WH, where l and r are terms of sort Cfg
representing program configurations. The language WH features global variables, boolean expressions,
assignments, conditionals, while loops and first-order functions. In Figure 1 we present the syntax of
WH in a BNF-like notation.

Exp ::= Int | Bool | Id | Exp binop Exp | unop Exp | call FunCall | skip |
Exp;Exp | Id:=Exp | whileExpdoExp | ifExpthenExpelseExp

FunCall ::= Id | FunCall(Exp) FunBody ::= Exp | λ Id.FunBody
Stack ::= [] | Exp Stack Cfg ::= 〈Stack,Env,Funcs〉
Env ::= Array{Int}{Int} Funcs ::= Array{Id}{FunBody}

Figure 1: The syntax of WH written in BNF-like notation. Each non-terminal is a sort. Subsorting is
implemented in a many-sorted setting by an invisible injection from the smaller sort into the larger sort.

Values. The WH language has two types of values (expressions that have been completely evaluated):
integers and booleans. The predicate val : Exp → Bool holds for expressions that are values. The
constants of sort Int are . . . ,−2,−1,0,1,2, . . .. The constants of sort Bool are > and ⊥.

Expressions and statements. There is no syntactic difference in the language between expressions
and statements; both are grouped under the sort Exp. Any value is an expression. Identifiers (program
variables), which are terms of sort Id, are also expressions. Binary (summation, multiplication, logical
and, the relation less-than and others) and unary operands (unary minus, boolean negation, and possibly
others) are represented by the constructs Exp binop Exp and unop Exp (binop ranges over {+,≤, . . .}
and unop ranges over -,not, . . .. The special expression � (pronounced hole) is not part of the user-
facing syntax and it is only used as an auxiliary construct by the rewriting rules defining the operational
semantics.
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〈x:=e es,env, fs〉−→〈e x:=� es,env, fs〉 if ¬val(e) assignment
〈i x:=� es,env, fs〉−→〈x:=i es,env, fs〉
〈x:=i es,env, fs〉−→〈es,update(env,x, i), fs〉
〈x es,env, fs〉−→〈lookup(x,env) es,env, fs〉 identifier lookup
〈e1+e2 es,env, fs〉−→〈e1 �+e2 es,env, fs〉 if ¬val(e1) binary
〈i1 �+e2 es,env, fs〉−→〈i1+e2 es,env, fs〉 operations
〈i1+e2 es,env, fs〉−→〈e2 i1+� es,env, fs〉 if ¬val(e2)
〈i2 i1+� es,env, fs〉−→〈i1+ i2 es,env, fs〉
〈i1+ i2 es,env, fs〉−→〈i1+ i2 es,env, fs〉
〈note es,env, fs〉−→〈e not� es,env, fs〉 if ¬val(e) unary
〈b not� es,env, fs〉−→〈notb es,env, fs〉 operations
〈notb es,env, fs〉−→〈b es,env, fs〉
〈if> thene2 elsee3 es,env, fs〉−→〈e2 es,env, fs〉 if-then-else
〈if⊥ thene2 elsee3 es,env, fs〉−→〈e3 es,env, fs〉
〈ife1 thene2 elsee3 es,env, fs〉−→〈e1 if� thene2 elsee3 es,env, fs〉

if ¬val(e1)
〈b if� thene2 elsee3 es,env, fs〉−→〈ifb thene2 elsee3 es,env, fs〉
〈whilee1 doe2 es,env, fs〉−→ while loop

〈ife1 then(e2;whilee1 doe2)elseskip es,env, fs〉
〈e1;e2 es,env, fs〉−→〈e1 e2 es,env, fs〉 sequence
〈skip es,env, fs〉−→〈es,env, fs〉 skip
〈call f es,env, fs〉−→〈lookup(f, fs) es,env, fs〉 function calls
〈call f(e) es,env, fs〉−→〈call f call�(e) es,env, fs〉
〈λx.fb call�(e) es,env, fs〉−→〈call λx.fb(e) es,env, fs〉
〈call λx.fb(e) es,env, fs〉−→〈e call λx.fb(�) es,env, fs〉 if ¬val(e)
〈i call λx.fb(�) es,env, fs〉−→〈call λx.fb(i) es,env, fs〉
〈call λx.fb(i) es,env, fs〉−→〈subst(x, i, fb) es,env, fs〉

Figure 2: The semantics of the WH language as a set of constrained rewrite rules.

The statements skip, Exp;Exp and Id:=Exp represent a no-op, sequential composition and assign-
ment to a global variable, respectively. The statement whileExpdoExp represents the standard while
loop. The construct ifExpthenExpelseExp represents conditional statements and expressions.

Program configuration. The semantics of a program is a transition system over (program) config-
urations. Configurations in WH are tuples 〈[e1, . . .,en],env, fs〉 consisting of: • a cons-list [e1, . . . ,en] of
expressions and statements to be evaluated in order, representing the evaluation stack and • an environ-
ment env mapping identifiers to their values, • and an environment fs mapping function names to their
bodies. We will use a Haskell-like notation for lists: [] is the empty list, is the (right-associative) list
constructor, and [e1,e2, . . . ,en] is a shorthand for e1  e2  . . . en  []. The operational semantics
of WH is given by the logically constrained rewrite rules in Figure 2. We use the following conven-
tions: • standard font is used for meta-variables (e.g., l,r standing for terms and φ for constraints),
• sans− serif, red font for object-level variables (e.g., e : Exp, i : Int) and • bold, blue font for objec-
t-level non-variable symbols (e.g., the function symbol lookup : Env× Id→ Int or the sort Env).

The first three rules define the semantics of the assignment statements and we explain them in more
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detail. The first rule ensures that if an assignment x:=e is at the top of the stack ( x:=e es) and e is not
a value (i.e., not an integer), then e is scheduled for evaluation, by placing it in front of the computation
stack (e x:=� es), where the other semantic rules ensure its eventual evaluation to an integer. The
special constant � (pronounced hole) is used as a placeholder to recall which part of the statement has
been promoted for evaluation. The second rule ensures that once e (in the stack e x:=� es) has
been transformed into an integer i (the stack becomes i x:=�  es) using the rules for evaluation
of expressions, then the assignment statement is reconstructed: x:=i es. The third rule defines the
semantics of assigning an integer i : Int to the program identifier x : Id. In this case, the environment
is updated by using the update function (update is an interpreted function that is defined by the usual
theory of arrays).

To evaluate an WH program expression e (a term of sort Exp), we start with the initial configura-
tion 〈e [],env〉fs, where env is some arbitrary environment and fs is the set of functions defined in the
program and apply the constrained rewrite rules that define the semantics of WH until reaching a configu-
ration that has no successor. This style of giving an operational semantics to a language is called frame
stack style [24], was extended and popularized by the K framework [28] and it avoids the necessity of
refocusing [11] typical of operational semantics based on evaluation contexts.

2 Contribution

We propose a method for proving equivalence of two programs written in two arbitrary languages whose
semantics are given as LCTRSs. The method is based on two-sided simulation. The main advantage is
that our method is parametric in the two semantics. This allows for easy experimentation with various
settings encoded in the language semantics. We exploit this advantage to prove equivalence in the pres-
ence of resource bounds: it is easy to modify the operational semantics of WH to account for a bounded
stack, by adding a constraint to each rewrite rule:

〈x:=e es,env, fs〉−→〈e x:=� es,env, fs〉 if ¬val(e)∧ len(es)< k︸ ︷︷ ︸
new constraint

The new constraint imposes a bound of k+1 elements on the stack. We call the unbounded-stack version
of the WH language WH1 and the bounded-stack version WH2; both have the same syntax, but slightly
different semantics. We study using our method the equivalence in WH1 and WH2 of the programs

〈[call f(N)],env, fs〉 and
〈[call F(N,0,0)],env, fs〉

for N≥ 0, where the recursive functions f and F are defined by the function map

fs = { f 7→ λn. ifn = 0then0elsen+call f(n−1),
F 7→ λn.λ i.λa. if i≤ nthencall F(n, i+1,a+ i)elsea}.

Both functions compute the sum 1+ . . .+ n when the argument N is assigned a non-negative integer
n and are therefore functionally equivalent. However, the function f uses O(n) stack space, while F
uses constant stack space (it is a tail-recursive version of f). Therefore there is an observable difference
between f and F in WH2: f will generate a stack overflow for a sufficiently large input, while F will
terminate succesfully. Our method can show that they are equivalent in WH1 (unbounded stack), but it
(correctly) fails to prove them equivalent in WH2 (bounded stack).
To formally define the simulation relation, we require a technical improvement of LCTRSs in the form
of axiomatized symbols. An axiomatized symbol is defined by a ground convergent LCTRS. In our
example, we axiomatize a symbol reduce by
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reduce(i,n)−→ [] if i>n,
reduce(i,n)−→ (i+�) reduce(i+1,n) if i≤n.

Then reduce(i,n) stands for the informally presented cons-list [i+�,(i+1)+�, . . . ,n+�], which is used
to match configurations in executions of f against corresponding configurations in executions of F. The
axiomatized symbol reduce is used in Section 4 to define a simulation relation.

Contributions. •We propose an operationally-based framework for proving program equivalence that
is more flexible than existing approaches. We illustrate this by a new application: equivalence proofs in
the presence of resource bounds (e.g., stack size) • We extend our previous work on LCTRSs [8] by
axiomatized symbols, which are critical for expressing powerful simulation relations. We identify a
new problem in rewriting, unification modulo axiomatized symbols, a particular type of higher-order
unificationt that appears naturally in the context of program equivalence, but might also be useful in
other types of symbolic computation. • We implement the proof method in the prototype RMT tool; it
can prove equivalences that are out of the reach of other verifiers.

Structure. In Section 3, we propose definitions and proof systems for partial and full equivalence.
Section 4 presents the application, equivalence checking in the presence of resource bounds. We briefly
survey related work in Section 5 before concluding in Section 6. The accompanying technical report [9]
contains more details and applications of our method.

3 Simulation-based Equivalence Proofs

We assume that RL and RR are two LCTRSs modeling the semantics of two programming languages.
Let CfgL and CfgR be the sorts of the corresponding configurations. The two languages can be the same
or they can be different; all our results are parametric in RL and RR. Formally, we define equivalence
not between programs, but between program configurations. We sometimes distinguish between sym-
bolic program configurations (terms of sort CfgL or CfgR, possibly with variables) and ground program
configurations (elements of the interpretation of the sorts CfgL and CfgR). Our proof method shows
equivalence between two symbolic program configurations. The fact that the same variable occurs in
both symbolic configurations models that the two programs take the same input.

Sometimes two programs are equivalent, but end up in slightly different configurations. For example,
an imperative program might store its result in a global variable result, while a functional program would
simply reduce to its final value. We still want to be able to consider these programs equivalent. Therefore,
we parameterize our definition for equivalence by a set of base cases, which define the pairs of terminal
ground configurations that are considered to be equivalent. We denote by B (for base) the set of pairs of
ground terminal program configurations that are known to be equivalent.

We propose two definitions for the notion of functional equivalence of programs, based on two-way
simulations. In the following definitions, by a complete path ρ(P)−→∗RL

P′, we mean that no further
reduction step is possible for P′.

Definition 1 (Full (Partial) Simulation) A symbolic program configuration P is fully (partially) sim-
ulated by a symbolic program configuration Q under constraint φ with a set of base cases B, written
B � P≺Q if φ (B � P�Q if φ ) if, for any valuation ρ such that ρ(φ) = > and for any complete path
ρ(P) −→∗RL

P′, there exists a complete path ρ(Q) −→∗RR
Q′ such that (P′,Q′) ∈ B (or – for partial

simulation only – there exists an infinite path ρ(Q)−→RR . . .);

In full simulation, for any terminating run of the left hand side on some input, there is a terminating run
of the right hand side on the same input, such that the results are part of B (e.g., the results are equal).
For partial simulation, a terminating run of the lhs can be simulated by an infinite run of the right hand
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side on the same input. The notion of full (partial) simulation is inspired from the usual notion of full
(partial) equivalence [17] in the relational program verification literature. It can be seen as a lopsided
version of full (partial) equivalence. Full simulation is a transitive relation (assuming the base cases are
defined transitively). Partial simulation is not transitive (even for consistently defined sets of base cases).
Note that ≺⊆� (for a fixed B), which justifies the notation.

Definition 2 (Full (Partial) Equivalence) Two symbolic program configurations P and Q are fully equiv-
alent (partially equivalent) under constraint φ with a set of base cases B, written B � P∼Q if φ (B �
P'Q if φ ,), if B � P≺Q if φ and B−1 � Q≺P if φ (B � P�Q if φ and B−1 � Q�P if φ ).

Two-way full (partial) simulation gives the usual notion of full (partial) equivalence for determinate
programs. Partial equivalence is not an equivalence relation (hence the name partial). The notation is
justified by ∼⊆' (for a fixed B).

Proving full and partial simulation. We work with simulation formulae of the form P≺Q if φ for full
simulation and of the form P�Q if φ for partial simulation, where P is a symbolic configuration of sort
CfgL, Q is a symbolic configuration of sort CfgR and φ is a first-order logical constraint. To save space,
we write ≺.. for ≺ or � in contexts where both options are allowed. For a set R of formulae P≺..Q if φ , its
denotation is JRK = {(ρ(P),ρ(Q)) | (P≺..Q if φ) ∈ R and ρ � φ} (i.e., the pairs of instances of P and
Q that satisfy φ ).

We fix a set B of simulation formulae that under-approximates 1 the set B of base cases: JBK ⊆ B.
We also consider a set G (for goals) consisting of simulation formulae to be proven. The set G usually
includes the actual goal, but also a set of intermediate helper goals that are needed for the proof that we
call circularities. The proof systems for full and partial simulation, presented in Figure 3, manipulate se-
quents of the form G,B `g P≺Q if φ (for full simulation) and G,B `g P�Q if φ (for partial simulation),
where g ∈ {0,1}; G is the set of goals and B is the set of base cases. The superscript g to the turnstile
is a boolean flag (representing a guard) that denotes: 1. for full simulation: whether circularities are
enabled or not, as formalized in the proof rules; 2. for partial simulation: g = 1 allows the CIRC� rule to
not make progress on the rhs. The approximate informal meaning of a sequent is G,B `g P≺Q if φ is
that P simulates Q under the constraint φ with the set of base cases B if the simulations in G hold (see
Theorem 1 for the exact meaning).

The AXIOM rule states that any P is simulated by any Q under the constraint ⊥ (false). The
BASE rule handles the case when the right hand side Q can take a number of steps into Q′ so that
the base cases are reached (the pair (P, Q′) is part of the base cases). The constraint sub

(
(P,Q),R

)
,∨

P′≺..Q′ if φ ′∈R
∃var(P′,Q′,φ ′).(φ ′∧P=P′∧Q=Q′) expresses that P≺..Q is an instance of R by enumer-

ating all sequents P′ ≺..Q′ if φ ′ ∈ R and collecting a constraint ∃var(P′,Q′,φ ′).(φ ′∧P=P′∧Q=Q′) that
intuitively captures the fact that P≺..Q is an instance of the sequent. The only rule that is different be-
tween partial simulation and full simulation is CIRC. The CIRC rule handles the case when Q reaches in
a number of steps a configuration Q′ such that the pair P, Q′ is subsumed by some circularity in G. For
soundness, in full simulation, CIRC≺ can only be applied when the superscript for the turnstile, g, is 1.
The superscript becomes 1 only in rule STEP, which intuitively takes a step in the left-hand side. There-
fore, when the rule CIRC≺ is actually used, it means that there was progress on the lhs (by a previous
STEP on the lhs). The rule CIRC� is similar, but progress is required on the rhs, unless g = 1. Therefore,
for partial simulation, it is allowed to discharge a goal directly by CIRC�, without taking any step in the

1In practice, B can usually be chosen such that its denotation matches exact the set of base cases: JBK = B. However, our
proof system is still sound when B is an under-approximation.
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Notation: sub
(
(P,Q),R

)
,
∨

P′≺..Q′ if φ ′∈R
∃var(P′,Q′,φ ′).(φ ′∧P=P′∧Q=Q′)

AXIOM
G,B `g P≺..Q if⊥

BASE
G,B `g P≺..Q if φ ∧ ¬φB

G,B `g P≺..Q if φ
� φB→

∨
Q′ if φ ′∈∆

≤k
RR

(Q)

φ ′→sub
(
(P,Q′),B

)

CIRC≺
G,B `1 P≺Q if φ ∧ ¬φG

G,B `1 P≺Q if φ
� φG→

∨
Q′ if φ ′∈∆

≤k
RR

(Q)

φ ′→sub
(
(P,Q′),G

)

CIRC�
G,B `g P�Q if φ ∧ ¬φG

G,B `g P�Q if φ
� φG→

∨
Q′ if φ ′∈∆

≥1−g,≤k
RR

(Q)

φ ′→sub
(
(P,Q′),G

)

STEP

G,B `1 Pi≺..Q if φ
i (for all 1≤ i≤ n)

G,B `g P≺..Q if φ ∧¬φ
1∧ . . .∧¬φ

n

G,B `g P≺..Q if φ
∆RL(P if φ)={Pi if φ i|1≤ i≤ n}

Figure 3: The proof systems for full simulation and for partial simulation. The shorthand ≺.. should be
replaced consistently by either ≺ or � in any given rule.

left hand side, but with progress on the rhs (note the superscript ≥ 1− g to ∆). This corresponds to the
case where a terminal configuration is partially simulated by an infinite loop. Another difference is that
once rule STEP is applied to make progress on the lhs, circularities can be applied even if there is no
progress on the rhs. This corresponds potentially to the case where the left-hand side loops forever and
the right hand side finishes.

Finally, rule STEP can be used to take a symbolic step in the left-hand side. The set ∆ computes the
symbolic successors of a configuration w.r.t. a rewrite rule or rewrite system: ∆l,r,φ

(
t
)
= {σ ′(r) if φ ′∧φ |

(φ ′,σ ′) ∈mgu(t, l),(φ ′∧φ) satisfiable}, where mgu computes a complete set of unifiers modulo axiom-
atized symbols and builtins. Note that all possible symbolic steps from P are taken. This corresponds
to the fact that in our notion of simulation, every run of P must have a corresponding run in Q. The
constraint ¬φ 1∧ . . .∧¬φ n describes the instances of P where no step can be taken, and therefore these
configurations must be solved by some other rule, hence the second line in the hypotheses of STEP.
Rules BASE and CIRC∗ have a condition, � . . ., which is implemented by an oracle (in practice, an SMT
solver) deciding validity in a given theory. We write G,B `g G′ if G,B `g P≺..Q if φ for any formula
P≺..Q if φ ∈ G′ (i.e., all formulae in G′ are provable from G,B). We are now ready to give the main
soundness theorem of our result for full simulation and partial simulation.

Theorem 1 (Soundness for full/partial simulation) If G,B `0 G and JBK⊆ B, then for any simulation
formula P≺..Q if φ ∈ G, we have that B � P≺..Q if φ . The shorthand ≺.. should be consistently replaced by
either ≺ or �.

The theorem requires that all formulae in G be proved in order to trust any of them. If a formula in G
is not provable then even if the others are provable, they cannot be trusted to hold semantically. The
starting superscript of the turnstile must be 0, for soundness of CIRC. The conditions of the CIRC rules
are designed to use goals in G as axioms safely, while keeping soundness.
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4 Equivalence in the Presence of Resource Bounds

We continue the discussion in Section 2 and we show how our proof systems can be used to reason about
equivalence in the presence of a bound on the stack. For the following examples, we choose RL =RR =
WH, CfgL= CfgR= Cfg and we show the equivalence of the symbolic program configurations

〈[call f(N)],env, fs〉 and 〈[call F(N,0,0)],env, fs〉 for N≥ 0, where

fs = { f 7→ λn. ifn = 0then0elsen+call f(n−1), F 7→ λn.λ i.λa.if i≤ nthencall F(n, i+1,a+ i)elsea}
is the map containing the function bodies corresponding to the function identifiers f and F. We use
F(N,0,0) as an abbreviation for the syntactic construct F(N)(0)(0) of sort FunCall. Note that N is a
variable of sort Int and env is a variable of sort Env (map from program identifiers to integers). The
fact that both N and env occur in the two symbolic configurations models the fact that we want the two
programs to take the same input N and to start in the same environment env. In the initial configuration,
the helper arguments of F are fixed to 0.

Choice of base cases. We let B= {(〈[i],env, fs〉,〈[i′],env′, fs′〉) | i = i′∧ i, i′ ∈ Z}. This means that we
consider any terminal configurations that have reduced to the same integer i = i′ to be equivalent. We
under-approximate B by the following set B = {〈[i],env, fs〉≺.. 〈[i′],env′, fs′〉 if i= i′} of formulae for the
base cases (we happen to have a perfect approximation, as JBK = B). Choice of goals. The set of goals
includes the actual goal to be proven and two helper circularities: G = {

〈[call f(N)],env, fs〉 ≺.. 〈[call F(N,0,0)],env, fs〉 if 0≤ N,
〈call f(I−1) reduce(I,N),env, fs〉 ≺.. 〈[call F(N,0,0)],env, fs〉 if 0≤ I≤ N,
〈S reduce(I,N),env, fs〉 ≺.. 〈[call F(N, I,S)],env, fs〉 if 1≤ I≤ N},

where fs is the previously defined function map, n, i,a, f,F are constants of sort Id (program identifiers),
and where N, I,S : Int are variables.

Using the sets G,B defined above, we have that G,B `0 G for partial and full simulation and that
G−1,B−1 `0 G−1 for partial simulation. Our proof system cannot show G−1,B−1 `0 G−1 in the sense
of full simulation, intuitively because it cannot prove that the termination of F (one phase) implies the
termination of f (two phases). The full simulation relation would require an operationally-based termi-
nation argument [5] for the second phase of f, which we leave for future work. Next, we abbreviate
〈[call f(N)],env, fs〉 by f and 〈[call F(N,0,0)],env, fs〉 by F. We have used our implementation to show
the following simulations. •We show that f≺F, f�F and that F� f under the constraint N≥ 0 for our
running example in the language WH1. As explained above, our method cannot show F≺ f if N≥ 0. • In
WH2, none of f≺F, f�F, F� f, F� f hold under the constraint N≥ 0, and therefore these goals (cor-
rectly) fail. • Our method can also prove programs in two different languages as well. We show that f,
interpreted in WH1, is partially equivalent to F, interpreted in WH2, when N≥ 0. For one direction (f≺F),
we establish full simulation; for the other direction, just partial simulation. • We show that: • a while

loop is partially equivalent to a recursive function, when both compute the sum of the first N naturals, and
• full equivalence holds for an instance of loop unswitching. This proves that our approach can handle
structurally different programs.

Implementation. We have a prototype implementation of the two proof systems in the RMT tool at:

http://profs.info.uaic.ro/~stefan.ciobaca/wpte2021.

In addition to the bounded-stack example above, we have also used our tool to prove equivalence
of several equivalence examples in the literature. Figure 4 summarizes our results on some equivalence
benchmarks of Ctrl [16]2 and PEC [20].

2Examples found at http://cl-informatik.uibk.ac.at/software/ctrl/tocl/.

http://profs.info.uaic.ro/~stefan.ciobaca/wpte2021
http://cl-informatik.uibk.ac.at/software/ctrl/tocl/
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Example Ctrl RMT

fib02 4.02s 25.73s
fib03 3.06s 27.55s
fib04 Timeout 77.40s
fib05 3.99s 36.67s
fib06 32.81s 63.39s
fib07 2.74s 59.31s
fib08 3.44s 60.77s
fib09 3.09s 41.51s
fib10 2.34s 35.91s
fib11 Timeout 79.52s
fib12 No No
sum01 2.39s 10.51s
sum02 2.33s 12.36s
sum03 2.62s 12.30s

(a)

Optimization PEC CORK RMT

Code hoisting X 0.32s 0.41s
Constant propagation X 0.33s 0.31s
Copy propagation X 0.33s 0.26s
If-conversion X 0.34s 0.48s
Partial redundancy elimination X 0.34s 0.75s
Loop invariant code motion X 3.48s 3.79s
Loop peeling X 3.26s 0.97s
Loop unrolling X 12.17s 7.09s
Loop unswitching X 8.19s 4.71s
Software pipelining X 8.02s 3.56s
Loop fission X 23.45s ∗ 10.40s
Loop fusion X 23.34s ∗ 9.67s
Loop interchange X 29.30s ∗ 108.63s
Loop reversal X 8.41s 2.70s
Loop skewing X 8.50s 7.68s
Loop flattening × × ∗ 8.14s
Loop strength reduction × 5.63s 5.26s
Loop tiling 01 × 10.94s

25.41s
Loop tiling 02 ∗ 21.58s

(b)

Figure 4: In Subfigure a we compare against CTRL on a selection of examples [16]. Our tool RMT
is slower, but it can handle some new examples. In Subfigure b we compare against PEC [20] and
CORK [21] on a benchmark of equivalence proofs arrising in program optimizations. The annotation ∗
means that there is a technical difference in the definition of equivalence between RMT and CORK/PEC.

5 Related Work

Due to space limits, we only present a selection of relevant related work. A more extensive comparison
can be found in the accompanying technical report [9]. Pitts [23] proposed the use of operationally-
based notions of contextual equivalence and the frame stack approach [24] for small-step semantics that
we use. The same style of using a frame stack was popularized by the K framework [28]. Logical
relations and bisimulation can be used to prove contextual equivalence. Bisimulation techniques [27]
are usually language dependent and proofs of congruence and other properties need to be established
independently. Logical relations techniques [13] can be used to prove contextual equivalences for various
languages. Several relational Hoare logics were proposed [3, 1] for reasoning about pairs of programs.
A concept close to relational Hoare logic is that of product-program [2], which are programs that mimic
the behavior of two programs; they allow to reduce relational reasoning to reasoning about a single
program. Grimm et al. [18] propose a general method for relational proofs based on encoding the state
transformation as a monad in the F* proof assistant. Kundu et al. [20] propose an implementation of a
parametrized equivalence prover and we compare against the tool in Figure 4. Chaki et al. [6] propose
a definition of equivalence suitable for nondeterministic programs, and introduce sound proof rules for
regression verification of multithreaded programs. A technique for automated discovery of simulation
relations is proposed by Fedyukovich et al. [15]. Techniques based on an efficient encoding of the



S, . Ciobâcă, D. Lucanu & A.S. Buruiană 9

relational property as a set of constrained Horn clause are also possible [12]. A technique for automatic
proving of equivalences for procedural programs based on LCTRSs is proposed by Fuhs et al. [16].
The main difference is that in our approach, the operational semantics of the two programs are also
given as input. Logically constrained term rewriting systems, which combine term rewriting and SMT
constraints are introduced by Kop et al. [19]. Rewriting modulo SMT is introduced by Rocha et al. [26]
for analyzing open systems. Our own related work. We first considered semantics-based equivalence [22]
for symbolic programs in the context of the K framework [28], but for a notion of behavioural equivalence
of deterministic programs. We [10] gave a semantics-based proof system for full equivalence. Most of the
infrastructure required for LCTRSs is based on our earlier work on proving reachability in LCTRSs [8]
and solving unification modulo builtins [7].

6 Conclusion and Future Work

We have introduced and implemented in RMT a new method for proving simulation and equivalence in
languages whose semantics are defined by LCTRSs in frame stack style. To express simulation relations,
we enrich standard LCTRSs with axiomatized symbols, which raise new research questions. We also
generalize existing definitions for full/partial equivalence. Our approach allows for nondeterminism in
the definitions and proofs of equivalence, which we will exploit to its full potential in future work. We
show the advantages of our framework in proving equivalence in the presence of resource bounds. The
applications critically relies on easily changing the operational semantics of the language(s).

As future work, we would like to apply our methods to more challenging concurrent programs and
to realistic rewrite-based language definitions, available as part of the K framework [14, 4]. We would
also like to integrate an external termination checker to handle full equivalence better. Other directions
for future work include relational cost analysis [25].
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[8] Ştefan Ciobâcă & Dorel Lucanu (2018): A Coinductive Approach to Proving Reachability Properties in Log-
ically Constrained Term Rewriting Systems. In: Automated Reasoning - 9th International Joint Conference,
IJCAR 2018, Oxford, UK, July 14-17, 2018, Proceedings, pp. 295–311, doi:10.1007/978-3-319-94205-6 20.
Available at https://doi.org/10.1007/978-3-319-94205-6_20.
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