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We present a formally verified renaming refactoring for a subset of Haskell 98 giving a case-study in
proving soundness properties of Haskell refactorings. Our renaming is implemented in the dependently-
typed language Idris, which allows us to encode soundness proofs as an integral part of the imple-
mentation. We give the formal definition of our static semantics for our Haskell 98 subset, which
we encode as part of the AST, ensuring that only well-formed programs may be represented and
transformed. This forms a foundation upon which refactorings can be formally specified. We then
define soundness of refactoring implementations as conformity to their specification. We demonstrate
our approach via renaming, a canonical and well-understood refactoring, giving its implementation
alongside its formal specification and soundness proof.

1 Introduction

Refactoring [4] is the process of changing the structure of a program without changing its behaviour
and is a common practice aimed at making a program more understandable, accessible, or amenable
to further alterations to a program’s design. Refactorings can be applied manually, which is both a te-
dious and error-prone process [11]. Alternatively, refactorings can be applied semi-automatically via
refactoring tools. There are many such tools [8], and they are an important inclusion in the software
developer’s arsenal. Through automation, they can both simplify the workflow and guard against com-
mon human mistakes, such as overlooking one file within hundreds. Unfortunately, automated tools are
not immune to error. Given an erroneous refactoring implementation, they may change the behaviour
of code silently in unexpected and undesirable ways. The difficulty in constructing refactoring tools
is generally a consequence of refactorings being specifically concerned with transformations over syn-
tax. Unlike compilers, for instance, which can define and effect transformations over a small desugared
core language, refactoring tools must represent and transform both concrete and abstract syntax. Ac-
cordingly, the implementation of a refactoring tool necessarily grows in complexity not only with the
complexity of its refactorings, but also with the number of syntactic constructs that the target language
defines. As refactoring tools grow in power and complexity, and are applied to ever larger code bases,
so too increases the opportunity for error. It is therefore crucial that refactoring tools adhere to the key
correctness criterion of not changing program behaviour. Typical approaches are reliant on the testing
code coverage of their implementation to give confidence that refactorings are performed in the desired
way. Yet testing is not infallible; bugs can still occur within well-tested tools (e.g. [5]). Alternative
approaches use the methods of formally verified software [7, 10, 9], which may provide soundness guar-
antees for a refactoring system. However, they often separate proof from implementation, even in cases
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1 module Sum where
2
3 import Prelude hiding (sum)
4
5 sum n [] = n
6 sum n (h:t) = (+) h rest
7 where
8 rest = (sumRest n t)
9 sumRest n t = sum n t

10
11 main = sum 0 [1..4]

(a) Before

1 module Sum where
2
3 import Prelude hiding (fold)
4
5 fold n [] = n
6 fold n (h:t) = (+) h rest
7 where
8 rest = (sumRest n t)
9 sumRest n t = fold n t

10
11 main = fold 0 [1..4]

(b) After

Figure 1: Renaming sum; before and after (with differences highlighted) the application of the rename
refactoring.

where the implementation is automatically generated from the proof. Consequently, the relationship of
proof to actual implementation is not always clear: there is an implicit trust that the implementation
correctly models the formalism. We take a different approach: producing a proof of soundness as part
of the refactoring itself. In our case, we use Idris [1] to provide a verified refactoring framework for
a subset of Haskell 98. Dependent types allow us to formally define the semantics of our refactorings
and give soundness proofs as part of the refactoring implementations themselves. The inclusion of a
refactoring is, by design, only possible when those proof obligations have been met. In other words,
the proofs and the implementation are part of the same system such that the implementation directly
depends upon the proofs, and vice versa. In our approach, there is no implicit trust needed that the im-
plementation correctly models the formalism since the implementation is the formalism itself. This paper
presents a dependently-typed representation of the syntax of a subset of Haskell 98, which is intended as
a foundation for the implementation of refactorings. In order to facilitate soundness proofs, we encode
the static semantics (in this paper we focus purely on the binding structure as our static semantics) of
our Haskell 98 subset into its representation. This has the additional benefit of restricting the programs
that are representable within the tool, thus preventing the production of ill-formed Haskell programs for
free. We further demonstrate our approach by focussing on renaming as an example of a canonical and
well-understood refactoring. Renaming refers to the problem of substituting a function or variable name
such that all and only those occurrences that are bound by a particular definition are transformed, but
that no other occurrences of the name are affected. Renaming must ensure that it introduces no capturing
or shadowing violations; specifically, introducing a new name that already exists within the target scope
or where the new name conflicts with any binding already present within the scope, resulting in the new
name being captured in the result of the renaming; in our implementation, in the case of capturing vi-
olations, the refactoring simply returns the original program unchanged. Figure 1 gives an example of
renaming, with the program before renaming on the left, and the renamed equivalent, on the right. We
present both a formal specification of renaming over our Haskell 98 subset and an implementation of
renaming that incorporates a proof of its adherence to its formal specification. In this paper we focus
on structural equivalence – rather than functional equivalence – as a preliminary goal. Further work will
extend upon the proofs given here to take into account the functional semantics of Haskell programs and
their refactoring equivalence.
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p ∈ P := x〈l,i〉 (Variable Patterns)
| Ai ~p (Constructor Patterns)

e ∈ E := x〈l,i〉 (Variable Exp.)
| n (Integer Literal Exp.)
| e1 e2 (Application Exp.)
| \~p -> e (λ -Exp.)

c ∈C := ~p = e where ~d (Function Clauses)
d ∈ D := def f〈l,i〉~c (Function Decl.)

| def p = e where ~d (Pattern Decl.)
m ∈M := mod ~d (Modules)

Figure 2: Hs98: a subset of Haskell 98.

2 A Subset of Haskell 98

We focus on the subset, Hs98, of the Haskell 98 standard given in Figure 2. In Hs98, a valid program
is comprised of a single module, m ∈ M, where modules are defined as a vector of declarations, ~d.
Modules implicitly import a Prelude, i.e. a set of constructors and variables that are valid in the module.
Declarations are either pattern or function declarations. Pattern declarations consist of a pattern, p, an
expression, e, and a where-block, ~d. Function declarations are comprised of the function name, f〈l,i〉, and
a vector of clauses,~c. Declarations within the same vector are assumed to be defined mutually. A pattern
is either a variable, x〈l,i〉, or a constructor pattern comprising a constructor, Ai, and a vector of patterns,
~p. An expression may be: a variable, x〈l,i〉; an integer literal, n; an application, e1 e2; or a λ , \~p -> e.
Whilst we provide only an abstract presentation here, the full paper will include the full Idris definitions
for our syntactic constructs.

2.1 Variables and Constructors

For clarity of presentation we denote variables by x〈l,i〉 and constructors by Ai. We assume an infinite
set of valid variable names, VarN, and use f ,x,y, . . . to represent arbitrary variable names. A variable,
x〈l,i〉, is a triple comprising a variable name, x ∈ VarN, an identifier, i ∈ N, and a level identifier, l ∈ N.
Identifiers disambiguate variables since variable names may be shadowed by declarations in where-
blocks. Similarly, level identifiers group variables in order to enforce linearity (i.e. uniqueness) [6] of
variable names that are declared in the same vector of patterns or declarations. As defined in the Haskell
98 Report [6], Haskell 98 has linear patterns, in the sense that variables within a set of patterns must be
declared exactly once, which forbids function declarations in the form f x x = e. We assume a set of
valid constructor names, CtrN, and use A and B to represent arbitrary constructor names. A constructor,
Ai, is a constructor name, A ∈ CtrN, indexed by an identifier, i ∈ N. Identifiers are assumed to be unique
within a given scope. Since type declarations are not included in Hs98, constructors are limited to those
defined in the Prelude. All variables and constructors are unqualified, i.e. variables are not preceded by
a module name.

2.2 Environments

Scoping rules via environments represent a significant part of our static semantics. Intuitively, we define
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1 data EnvItem : HsNameKind -> Type where

2 MkEnvItem : (id : Nat) -> (na : Name k) -> EnvItem k

3
4 data ScopeLevel : Type where

5 MkScopeLevel : (lvl : Nat)

6 -> (vars : Vect nvars (EnvItem Variable))

7 -> {lin : UniqueNames vars}

8 -> ScopeLevel

9
10 data Env : Type where

11 MkEnv : (ctrs : Vect nctrs (EnvItem Constructor))

12 -> (lvls : Vect nlvls ScopeLevel)

13 -> {ok : UniqueIds ctrs lvls}

14 -> Env

15
16 data EnvAddNewLevel : (env_init : Env)

17 -> (vars : Vect n (HsNameTy Variable))

18 -> (sameLevel : SameLevel vars)

19 -> (env_new : Env)

20 -> Type where

21 ...

Listing 1: Definitions for environments, scope levels, and extending environments in Hs98.

an environment, σ = (~Ai,~η), to be a pair comprising a vector of constructors, ~Ai, and a vector of scope
levels, ~η . In our AST, environments are defined by the type Env (Listing 1). In addition to ~Ai and
~η , the sole constructor, (MkEnv ~Ai ~η ok), takes a proof, ok, that all identifiers across ~Ai and ~η are
indeed unique. Splitting constructors and variables simplifies both proofs of membership and extending
environments with new scope levels in our implementation. Moreover, we use vectors since this allows
the implicit representation of the ordering of scope levels. Intuitively, a scope level, η = (l, ~x〈l,i〉), is a pair
comprising a level identifier, l, and a vector of variables, ~x〈l,i〉, that are declared in the same pattern, vector
of patterns, or where-block. Scope levels are formally defined by the type ScopeLevel in Listing 1,
such that η corresponds to (MkScopeLevel l ~x〈l,i〉 lin), where lin is a proof that all variable names
in ~x〈l,i〉 are distinct. Environments are extended, denoted η∪ ~x〈l,i〉, by a vector of variables, ~x〈l,i〉, when all
variables in ~x〈l,i〉 have the same level identifier. Extending environments is defined by EnvAddNewLevel

in Listing 1. EnvAddNewLevel is indexed by two environments, env_init and env_new, a vector of
variables, vars (denoted ~x〈l,i〉), and a proof, sl, that all variables in ~x〈l,i〉 (i.e. vars) have the same level
identifier. When ~x〈l,i〉 is empty, no new scope level is added to the environment, and thus the environment
does not change (i.e. env_init = env_new). Otherwise, env_new is formed by prepending a new
scope level to ~η in env_init, i.e.

1 env_new = MkEnv ~Ai (MkScopeLevel lv envitems :: ~η)

where env_init = (MkEnv ~Ai ~η). Here, envitems is the result of transforming each variable in ~x〈l,i〉
to environment items. In addition to sl, i.e. the proof that all variables in ~x〈l,i〉 have the same level
identifier, EnvAddNewLevel has three proof obligations:

1. that the level identifier for all variables in ~x〈l,i〉 is fresh with respect to the level identifiers used in
lvls (i.e. isNewLevel);

2. that no two variable names in envitems are the same; and
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1 〈mod [

2 〈def sum〈1,4〉 [

3 〈〈[n〈2,5〉, Nil1[]]〉σ1 = 〈n〈2,5〉〉σ2 where []〉σ1,

4 〈〈[n〈2,5〉, Cons0[h〈2,6〉, t〈2,7〉]]〉σ1 = 〈(+)〈0,2〉 h〈2,6〉 rest〈3,11〉〉σ3

5 where [

6 〈def 〈[rest〈3,11〉]〉σ3 =

7 〈sumRest〈3,10〉 n〈2,5〉 t〈2,7〉〉σ3 where []〉σ3,

8 〈def sumRest〈3,10〉 [

9 〈〈[n〈4,12〉, t〈4,13〉]〉σ3 =

10 〈sum〈1,4〉 n〈4,12〉 t〈4,13〉〉σ4 where []〉σ3

11 ]〉σ3

12 ]

13 ]〉σ1,

14 〈def [main〈1,14〉] = sum〈1,4〉 0 (enumFromTo〈0,3〉 1 4) where []〉σ1

15 ]〉σ0

Listing 2: The module Sum from Listing 1a in Hs98 with indexed environments.

3. that all identifiers for variables and constructors in the extended vector of scope levels are unique.

Since environments control when and where variables and constructors can occur in the AST, we index
each declaration, expression, and pattern by an environment. Each pattern, p, expression, e, declaration,
d, and function clause, c, is indexed by an environment, σ ; denoted 〈p〉σ , 〈e〉σ , 〈d〉σ , and 〈c〉σ , respec-
tively. Modules also have an environment, σ0, representing the Prelude. Each declaration in ~d is indexed
by the environment, σ , where σ = σ0∪ ~x〈l,i〉, given the vector of variables, ~x〈l,i〉, that are exposed in ~d,
i.e. function names and variables declared in pattern declarations. Similarly, in pattern declarations, σ

is extended by the variables exposed by ~d, and both e and declarations in ~d are indexed by the resulting
σ1. In function clauses, since where-blocks can shadow variables defined in patterns, σ is first extended
with the variables declared in ~p, and then extended with the variables exposed by ~d. In λ -expressions,
e is indexed by the environment, σ1, that is formed by extending σ with the variables in ~p. In all other
cases, an environment is propagated, without change, to all subexpressions or subterms. When x〈l,i〉 oc-
curs in an expression, 〈e〉σ , x〈l,i〉 must be in σ , which we denote x〈l,i〉 ∈ σ and is defined by the type
(ElemEnv σ x〈l,i〉).

Example 2.1 (Sum with Environments). Listing 2 shows how we can represent the syntax of the module
in Figure 1 with the following environments.

σ0 := ([Cons0,Nil1], [(0, [(+)〈1,2〉,enumFromTo〈0,3〉])])
σ1 := σ0∪ [sum〈1,4〉,main〈1,14〉]

σ2 := σ1∪ [n〈2,5〉]
σ3 := σ2∪ [n〈2,5〉,h〈2,6〉, t〈2,7〉,rest〈3,11〉,sumRest〈3,10〉]

σ4 := σ3∪ [n〈4,12〉, t〈4,13〉]

Here, σ0 is the Prelude environment, σ1 is the environment for each declaration in the module, σ2 is the
environment for the RHS of the first clause of sum〈1,4〉, σ3 is the environment for the RHS and where-block
definitions of the second clause of sum〈1,4〉, and σ4 is the environment for the RHS of sumRest〈3,10〉. For
clarity, we do not annotate subterms when no change occurs to the environment nor do we change an
environment when a where-block is empty, e.g. in main〈1,4〉. Additionally, we say 〈~•〉σ to denote that all
elements in~• are indexed by σ , where • stands for any term in Hs98.
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1 renameModule : (lv : Nat) -> (id : Nat)

2 -> (oldName : HsNameTy Variable)

3 -> (newName : HsNameTy Variable)

4 -> (mod : HsModuleTy)

5 -> Maybe HsModuleTy

Listing 3: Type signature for implementation of renaming refactoring over modules in Hs98.

1 renameExpr : (lv, id : Nat)

2 -> (oldN, newN : Name Variable)

3 -> (env : Env)

4 -> (e : HsExpTy initEnv)

5 -> Maybe (HsExpTy env)

6 ...

7 renameExpr lv id oldN newN env (HsLambda ps e)

8 with (renamePatTy lv id oldN newN env ps)

9 | Nothing = Nothing

10 | Just ps’

11 with (decHsPatSecTy env ps’)

12 | No np = Nothing

13 | Yes (Element env_e’ psec’) with (renameExpr lv id oldN newN env_e’ e)

14 | Nothing = Nothing

15 | Just e’ =

16 Just (HsLambda {env_e=env_e’} {psec=psec’} ps’ e’)

Listing 4: Partial definition for implementation of renaming refactoring; including λ and variable
expressions in Hs98.

3 Renaming and its Implementation

In this section, we give an overview of our implementation for renaming. Listing 3 gives the type
signature for renameModule, which transforms a given module, 〈m〉σ0 , into a new module, 〈m′〉σ0 , such
that all occurrences of a given variable, x〈l,i〉, are renamed to y〈l,i〉. Here, lv corresponds to l, id to
i, oldName to x, newName to y, and mod to 〈m〉σ0 . Intuitively, renameModule folds over 〈m〉σ0 such
that all HsNameTy nodes that represent x〈l,i〉 in the AST of 〈m〉σ0 are replaced by an equivalent node
representing y〈l,i〉 in the AST of 〈m′〉σ0 , and that all environments, σ , in 〈m〉σ0 where x〈l,i〉 ∈ σ are
transformed such that y〈l,i〉 ∈ σ in 〈m′〉σ0 . Transforming x〈l,i〉 in some environment, σ , is a standard
substitution operation and is denoted σ [x〈l,i〉 → y〈l,i〉]. In cases where renaming fails, e.g. when y〈l,i〉
will violate linearity, renameModule returns Nothing. In order to illustrate our implementation, we
consider renaming over expressions. Listing 4 gives a partial definition of renameExpr, where we
focus on λ -expressions. In addition to the expression being refactored, e, the variable to be renamed
(comprising lv, id, and oldN), and the new name of the variable (newN), renameExpr takes as argument
an environment, env. Any expression that is produced by renameExpr is indexed by env, where env

represents σ [oldN〈lv,id〉→ newN〈lv,id〉], and σ corresponds to initEnv, the (arbitrary) environment by
which the original expression is indexed. λ -expressions are reconstructed in the HsLambda case. First,
the patterns of the λ , ps, are transformed via renamePatTy. As with renameHsNameTy, renamePatTy
only transforms a pattern when it represents oldN〈lv,id〉 and the resulting vector of patterns, ps’, is

indexed by env. In order to recurse into e, env is extended by the variables in ps’ via decHsPatSecTy.
The result of decHsPatSecTy returns a dependent pair comprising a new environment, env_e’, and the
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1 data DecldVectHsDeclTy : (lv,id : Nat) -> (x : Name Variable)

2 -> (ds : Vect nds (HsDeclTy env dk))

3 -> Type where

4 HereF : DecldVectHsDeclTy lv id x (HsFunBind (HsIdentVar lv id x) cs :: ds)

5 HereFInClauses : (there : DecldVectHsDeclTy lv id x cs)

6 -> DecldVectHsDeclTy lv id x (HsFunBind (HsIdentVar k j z) cs :: ds)

7 ...

8
9 data DecldHsModuleTy : (lv,id : Nat) -> (x : Name Variable) -> (m : HsModuleTy)

10 -> Type where

11 There : (p : DecldVectHsDeclTy lv id x ds) -> DecldHsModuleTy lv id x (HsModule env vs ds)

Listing 5: Definitions for the property that a variable is declared in Hs98 modules and function
declarations.

proof, psec’, that env_e’ correctly extends env by the variables in ps. Finally, we recurse into e to
refactor the body of the λ . The result is a reconstruction of the original λ where it is now indexed by env

and any occurrences of oldN〈lv,id〉 in ps and e have been transformed. Modules, declarations, function
clauses, and patterns are all refactored similarly.

4 Soundness of Renaming

In this section, we define what it means for an implementation of renaming to be sound in terms of the
transformations effected and give a proof that the implementation described in Section 3 is sound. We
show structural equivalence, analogous to proving equivalence to a de Bruijn index representation [3].
Intuitively, given two modules, 〈m〉σ0 and 〈m′〉σ0 , where 〈m′〉σ0 is the result of renaming some variable
x〈l,i〉 in 〈m〉σ0 to y〈l,i〉, a renaming refactoring is sound when we can prove that x〈l,i〉 is defined in 〈m〉σ0 ,
that y〈l,i〉 is defined in 〈m′〉σ0 , and that the structures of 〈m〉σ0 and 〈m′〉σ0 are equivalent.

4.1 Variable Declaration

Our soundness definition requires proofs that x〈l,i〉 is declared in 〈m〉σ0 and that y〈l,i〉 is declared in 〈m′〉σ0 .
This ensures that the eponymous renaming does indeed occur as a result of the refactoring. Whilst re-
naming could be applied to a module that does not contain the declaration of x〈l,i〉, and would return the
module unchanged, we elide this case here because we are specifically interested in positive transforma-
tions. To aid our presentation, we use set inclusion to denote this property; e.g. w〈k, j〉 ∈ 〈m〉σ0 denotes
that w〈k, j〉 is declared in 〈m〉σ0 . We say that x〈l,i〉 ∈ 〈m〉σ0 if there exists some pattern variable or function
name w〈k, j〉 ∈ 〈m〉σ0 such that x = w∧ l = k∧ i = j. In our implementation, we define DecldHsModuleTy
(Listing 5) as the family of types corresponding to x〈l,i〉 ∈ 〈m〉σ0 for a given x〈l,i〉 and 〈m〉σ0 . In Listing 5,
lv corresponds to l, id to i, x to x, and m to 〈m〉σ0 . DecldHsModule has a single constructor, There,
which takes a proof, later, that x〈l,i〉 is declared in one of the declarations in ds at the top level of the
module. DecldVectHsDeclTy is defined similarly: HereF states that x〈l,i〉 is declared as the name of the
function declaration at the head of ds; and HereFInClauses states that x〈l,i〉 is declared in a pattern or
where-block in one of the clauses that comprise the function at the head of ds. Definitions and decision
procedures for expressions, patterns, and the remaining declarations follow similarly.
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1 data RenamePrf : (lv,id : Nat) -> (oldN,newN : Name Variable)

2 -> (m1 : HsModuleTy)

3 -> (rn : Maybe

4 (DecldHsModuleTy lvl id oldN m1,

5 (m2 : HsModuleTy **

6 (StructEq m1 m2, DecldHsModuleTy lvl id newN m2))))

7 -> Type where

8 RenameFail : RenamePrf lvl id oldN newN m1 sPrf Nothing

9 RenameSucc : (oldD : DecldHsModuleTy lvl id oldN m1)

10 -> (newD : DecldHsModuleTy lvl id newN m2)

11 -> (eq : StructEq m1 m2)

12 -> RenamePrf lvl id oldN newN m1 sPrf (Just (oldD, (m2 ** (eq,newD))))

Listing 6: Definition of soundness for the renaming refactoring implementation, rename, over Hs98.

4.2 Structural Simplification

In order to prove that two modules, 〈m〉σ0 and 〈m′〉σ0 are structurally equivalent, we first define the pro-
cess of structural simplification. Intuitively, structural simplification is defined as a surjection from a
module, 〈m〉σ0 , to an equivalent but simplified module, µ ∈ M′. In our presentation, structural simpli-
fication is denoted 〈m〉σ0 ⇓ µ . Our simplified syntax can be seen as being comprised of the syntax in
Figure 2 sans environments and both variable and constructor names. Consequently, variables now com-
prise an identifier indexed by its level, il , where i is the variable identifier and l is the level identifier;
we use this indexed notation to avoid ambiguity with standard variables from the enriched syntax. Sim-
ilarly, constructors are represented by an identifier, i, only. This affects variable patterns in P′, variable
expressions in E ′, and function declarations in D′. All other syntactic constructs are unchanged. In our
implementation, the simplified AST is equivalent to our standard Hs98 AST but stripped of all static
semantic terms (i.e. proofs) and variable names. Intuitively, two modules are structurally equivalent
when their structural simplifications are the same. We denote structural equivalence by 〈m〉σ0 ≡ 〈m′〉σ0 ,
where 〈m〉σ0 and 〈m′〉σ0 are modules s.t. µ = µ ′, given that 〈m〉σ0 ⇓ µ and 〈m′〉σ0 ⇓ µ ′ hold and where
µ,µ ′ ∈M′.

4.3 Soundness of Renaming Implementations

We give the definition for soundness of renaming by the type RenamePrf in Listing 6. RenamePrf is
indexed by: the variable to be renamed, x〈l,i〉; its new name, y; a module, 〈m〉σ0 ; and the result of the
renaming implementation, rename (Listing 8). In Listing 6, lv corresponds to l, id to i, oldN to x,
newN to y, m1 to 〈m〉σ0 , and rn to the return type of rename. Since the renaming may fail, RenamePrf
has two constructors: RenameFail and RenameSucc. The failure case, RenameFail, is trivial since
we are only concerned that a successful application of rename transforms 〈m〉σ0 correctly. Intuitively,
a successful application of rename to 〈m〉σ0 will produce the module 〈m′〉σ0 such that x〈l,i〉 ∈ 〈m〉σ0 ,
y〈l,i〉 ∈ 〈m′〉σ0 , and 〈m〉σ0 ≡ 〈m′〉σ0 all hold. In RenamePrf, these correspond to oldD, newD, and eq,
respectively. In order to prove that our implementation of renaming conforms to RenamePrf, we define
prfRename in Listing 7. prfRename states that rename is sound w.r.t. RenamePrf for all variables,
x〈l,i〉, names, y, and modules, 〈m〉σ0 . rename is defined as an interface to renameModule in Listing 3
from Section 3. Listing 8 gives the definition for both rename and rename’. rename takes x〈l,i〉 and
〈m〉σ0 , and returns either Nothing, indicating failure, or the refactored module 〈m′〉σ0 with proofs of
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1 prfRename : (lv, id : Nat)

2 -> (oldN, newN : Name Variable)

3 -> (m1 : HsModuleTy)

4 -> RenamePrf lv id oldN newN m1 m1sP (rename lvl id oldN newN m1)

5 prfRename lv id oldN newN m1 with (rename lvl id oldN newN m1)

6 | Nothing = RenameFail

7 | Just (oldD, (m2 ** (eq, newD))) = RenameSucc oldD newD eq

Listing 7: Function representing the proof that for all variables, names, and modules, rename conforms
to our soundness definition in Listing 6.

1 rename’ : (lv, id : Nat)

2 -> (oldN, newN : HsNameTy Variable)

3 -> (m1 : HsModuleTy)

4 -> Maybe (m2 : HsModuleTy ** StructEq m1 m2)

5
6 rename : (lv,id : Nat) -> (oldN, newN : Name Variable)

7 -> (m1 : HsModuleTy)

8 -> Maybe (DecldHsModuleTy lv id oldN m1,

9 (m2 : HsModuleTy ** (StructEq m1 m2, DecldHsModuleTy lv id newN m2)))

Listing 8: The interface function, rename, and its helper function, rename’, for the implementation of
renaming over Hs98.

x〈l,i〉 ∈ 〈m〉σ0 , y〈l,i〉 ∈ 〈m′〉σ0 , and 〈m〉σ0 ≡ 〈m′〉σ0 . The proofs of both x〈l,i〉 ∈ 〈m〉σ0 and y〈l,i〉 ∈ 〈m′〉σ0 are
obtained by calling isDecldHsModuleTy and assigned to oldD and newD, respectively. rename’ calls
renameModule, producing 〈m′〉σ0 , and constructs the proof of 〈m〉σ0 ≡ 〈m′〉σ0 by structurally simplifying
both modules and determining whether they are propositionally equal via the decision procedure, decEq.
Since both prfRename and rename are total functions that pass the type-checker, we can conclude that
rename will always produce a value of type RenamePrf and is thus sound w.r.t. our definition.

5 Conclusions and Future Work

In this paper we introduced a refactoring framework for a subset of Haskell 98, where refactorings
are implemented in Idris using dependent types. Within this framework, refactoring implementations
include proofs of their correctness. This ensures that if a refactoring is able to successfully transform
a given module, the resulting module conforms to the refactoring’s formal definition. We demonstrated
our framework on the canonical refactoring of renaming, with a renaming implementation and a verified
theorem of its soundness. In the future, we will extend this work in a number of directions. We plan
to write a denotational semantics of Hs98 and prove functional equivalence over the denotations. This
will be needed when we consider refactorings where structural equivalence alone may not be sufficient
to show soundness. We also plan to extend our framework to allow compositions of refactorings. By
composing refactorings together, and composing their proofs, we can show the refactoring composition is
correct by virtue of the composition of its proofs. We will also extend our framework with more Haskell
refactorings from the traditional set (lifting definitions, adding arguments, etc.) and to refactorings that
affect parts of a program’s types. This will require extending our static semantics to model aspects of
Haskell’s type system. Doing so would allow both refactorings that transform Haskell programs in a type-
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safe way and those that transform aspects of a program’s type structure. Examples include: λ -lifting,
where changing the scope of a definition (i.e. promoting a let declaration to a where; see [2] for details)
could introduce monomorphism restrictions on definitions that are inferred to be polymorphic in some of
their arguments; data type refactorings; and refactorings that aim to generalise a function making it more
polymorphic, say, and capturing this in its type signature. We will also extend our subset of Haskell to
include, e.g., multiple modules, pattern matching, type declarations and data types, let-expressions and
monadic computations, thus demonstrating applicability of our techniques to more real-world Haskell
use-cases.
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[8] Tom Mens & Tom Tourwé (2004): A Survey of Software Refactoring. IEEE Trans. Softw. Eng.
30(2), p. 126–139, doi:10.1109/TSE.2004.1265817. Available at https://doi.org/10.1109/TSE.2004.
1265817.

[9] Reuben N. S. Rowe, Hugo Férée, Simon J. Thompson & Scott Owens (2019): Characterising Renaming
within OCaml’s Module System: Theory and Implementation. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019, Association for Computing
Machinery, New York, NY, USA, p. 950–965, doi:10.1145/3314221.3314600. Available at https://doi.
org/10.1145/3314221.3314600.

[10] Nik Sultana & Simon Thompson (2008): Mechanical Verification of Refactorings. In: Proceedings of the
2008 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM
’08, Association for Computing Machinery, New York, NY, USA, p. 51–60, doi:10.1145/1328408.1328417.
Available at https://doi.org/10.1145/1328408.1328417.

[11] Simon J. Thompson (2004): Refactoring Functional Programs. In Varmo Vene & Tarmo Uustalu, editors:
Advanced Functional Programming, 5th International School, AFP 2004, Tartu, Estonia, August 14-21, 2004,
Revised Lectures, Lecture Notes in Computer Science 3622, Springer, pp. 331–357, doi:10.1007/11546382 -
9. Available at https://doi.org/10.1007/11546382_9.

http://dx.doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://dx.doi.org/10.1007/978-3-642-39038-8_26
http://dx.doi.org/10.1007/978-3-642-39038-8_26
https://doi.org/10.1007/978-3-642-39038-8_26
http://dx.doi.org/10.1017/S0956796803000418
https://doi.org/10.1017/S0956796803000418
http://www.cs.kent.ac.uk/pubs/2005/2250
http://www.cs.kent.ac.uk/pubs/2005/2250
http://dx.doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1145/3314221.3314600
https://doi.org/10.1145/3314221.3314600
https://doi.org/10.1145/3314221.3314600
http://dx.doi.org/10.1145/1328408.1328417
https://doi.org/10.1145/1328408.1328417
http://dx.doi.org/10.1007/11546382_9
http://dx.doi.org/10.1007/11546382_9
https://doi.org/10.1007/11546382_9

	Introduction
	A Subset of Haskell 98
	Variables and Constructors
	Environments

	Renaming and its Implementation
	Soundness of Renaming
	Variable Declaration
	Structural Simplification
	Soundness of Renaming Implementations

	Conclusions and Future Work

