
Implementing, and Keeping in Check,
a DSL Used in E-Learning

Oliver Westphal Janis Voigtländer

University of Duisburg-Essen

Context

I Programming paradigm course including teaching Haskell
I Automatic grading system for exercise tasks
I Domain specific language embedded in Haskell to easily

specify and test correctness of solution candidates for
I/O-Exercises1

I Goal: Ensure the framework works as expected and keeps
working when we extend it in the future

I Two perspectives
I As implementer: Technical correctness
I As instructor: Consistency of formulated exercises

1Westphal, O., & Voigtländer, J. (2020). Describing Console I/O Behavior
for Testing Student Submissions in Haskell, TFPIE 2019.

1

Specification Framework

Main Framework Concepts

1. Language of specifications
2. Notion of program traces
3. Acceptance criterion, relating specifications and traces
4. Testing procedure, checking adherence of programs to

specifications

TestingSpecification Feedback

Solution
Candidate

Check whether the set of traces described by a specification
contains all traces produced by a program

2

Specifications

I Read values, storing them in history-valued variables
I Output result of computation over variables
I Access variables either as a list of all values (A) or the

most current value (C)
I Basic branching and iteration

[.n] Î · ([. x] Ú ∠len(xA) = nC ∠E)→
E · [{sum(xA)} .]

l

“Read a positive integer n from the console, and then read n
integers one after the other and finally output their sum.”

3

Traces

Definition (Trace)
A trace is a sequence m0v0,m1, v1, . . . ,mn, vn, stop ∈ Tr,
where n ∈ Î,mi ∈ {?, !} and vi ∈ Ú.

Example: ?2 !3 !8 stop

Definition (Generalized Trace)
A trace is a sequence m0V0,m1, V1, . . . ,mn, Vn, stop ∈ TrG,
where n ∈ Î,mi ∈ {?, !} and Vi ⊆ Ú ∪ {ε}.

Example: ?2 !{3, 6} !{ε, 7} !{8} stop

4

Traces

Covering Relation

≺ ⊆ Tr × TrG

t ≺ tg i� t can be obtained by choosing one of the output
options from each Vi in tg.

Examples:
?2 !3 !8 stop ≺ ?2 !{3, 6} !{ε, 7} !{8} stop
?2 !3 !8 stop ⊀ ?2 !{3, 6} !{7} !{8} stop
?2 !3 !8 stop ⊀ ?4 !{3, 6} !{ε, 7} !{8} stop

5

Acceptance Criterion

accept (simpl.)

Let s ∈ Spec and t ∈ Tr,
accept(s, t) = True i� t is a valid program run with regard to
the behavior specified by s.

Examples:
s = [.n] Î ([. x] Ú ∠len(xA) = nC ∠E)→

E [{sum(xA)} .]

accept(s, ?2 ?3 ?12 !15 stop) = True
accept(s, ?2 ?3 ?12 !7 stop) = False
accept(s, ?3 ?3 ?12 !15 stop) = False

6

Acceptance Criterion

Definition (accept)

Let s ∈ Spec and t ∈ Tr,

accept([. x] τ · s′, k) (t,∆) =


accept(s′, k) (t′, store(x, v,∆))

, if t =?v t′ ∧ v ∈ τ
False , otherwise
. . .

k: continuation handling iteration contexts
∆: variable store for read values

cf. our TFPIE 2019 paper
7

Testing procedure

I Derive a function traceSet from accept by “solving”
accept(s, kI) (t,∆I) = True for t

I traceSet(s, kT
I) (∆I) ⊆ TrG contains all generalized traces

valid for s
I Testing a program p against specification s:

1. Sample tg ∈ TrG from traceSet(s, kT
I) (∆I)

2. Extract input sequence from tg
3. Run p on these inputs→ t ∈ Tr
4. Check whether t ≺ tg

I traceSet is more complicated to implement than accept
but we need it for testing

8

Validating the
Implementation

System Overview

TestingTask
Idea

Specification

Task
Description

Feedback

Interpreter runProgram

Student

Sample Solution

Solution
Candidate

Examples etc.

Inputs

Consistency of the framework depends on correctness of
testing procedure

9

Goal

1. Establish correctness of testing procedure
2. Provide means to ensure overall consistency of tasks

I Task Idea↔ specification
I Correctness of sample solution
I Automatically create supporting material for verbal

task descriptions
I etc.

10

Correctness of Testing
Procedure

Correctness of testing

1. Translate accept to Haskell (almost verbatim)
2. Establish correctness by code inspection
3. Validate (through testing) more involved testing

procedure against accept-semantics:

Theorem
Let s ∈ Spec and t ∈ Tr, then

accept(s, kI) (t,∆I) = True
i�

there exists a tg ∈ traceSet(s, kT
I) (∆I) such that t ≺ tg.

Validation through testing is not a replacement for a proof but
much easier to set up.

11

Test cases

Case 1: “⇒”
accept(s, kI) (t,∆I) = True
⇒ \ tg ∈ traceSet(s, kT

I) (∆I). t ≺ tg.

Hard due to distribution of positive and negative cases.
→ Unit testing needed.

Case 2: “⇐”
\ tg ∈ traceSet(s, kT

I) (∆I). t ≺ tg

⇒ accept(s, kI) (t,∆I) = True

No restrictions on s required, t with t ≺ tg easily obtainable
from tg.
→ Property based testing possible.

12

Side Note: Random Specifications

Main problem: Generating terminating iterations
I loop skeleton: (s1 · (s2 ∠? ∠s3))→

E

I condition-progress pair: (c, s∗)
I two possible loops:
I (s1 · (s∗2 ∠c ∠(s3 · E)))→

E

I (s1 · ((s2 · E) ∠not(c) ∠s∗3))→
E

(s∗i : insert s∗ (randomly) into si)

13

Examples

([{len(yA)} .] [. z] Ú (E ∠not(len(xA) > 1) ∠[. x] Ú))→E

[.n] Ú [{nC} .] [{nC − nC, nC} .] (0 ∠null(xA) ∠[.m] Ú)

[.m] Ú ([.n] Ú ∠len(nA) > 0 ∠E)→
E [{ε, sum(mA),mC} .]

[{sum(mA)} .] (([.m] Ú ∠null(mA) ∠0) ∠len(xA) = len(nA) ∠[.m] Ú)

[{ε, sum(zA)} .] [.n] Ú (0 ∠len(xA) < nC ∗ nC ∠([. y] Ú ∠nC = nC ∗ nC ∠0))

I Quality clearly depends on available functions and
condition-progress-pairs

I But, unusual specifications can be desirable for testing

14

Further Checks

System Overview

TestingTask
Idea

Specification

Task
Description

Feedback

Interpreter runProgram

Student

Sample Solution

Solution
Candidate

Examples etc.

Inputs

Overall consistency of the framework allows for cross
validation of di�erent artifacts

15

Exercise Creation Workflow

Creating Artifacts

I Task idea: “We want students to realize a simple I/O loop,
so they should write a program that reads a number and
then as many further numbers and finally prints a sum.”

I Task description: “Write a program which first reads a
positive integer n from the console, then reads n integers
one after the other, and finally outputs their sum”

I Specification:
[.n] Î ([. x] Ú ∠len(xA) = nC ∠E)→

E [{sum(xA)} .]
I Sample solution:

main :: IO ()
main = ...

16

System Overview

TestingTask
Idea

Specification

Task
Description

Feedback

Interpreter runProgram

Student

Sample Solution

Solution
Candidate

Examples etc.

Inputs

17

Validating Artifacts

I Check whether sample solution and interpretation of the
specification have matching behavior on some sample
inputs

I Use testing procedure to check sample solution against
specification itself

I Carefully inspect the task description
I Generate supporting material, e.g. example runs and add

to task description:
“Example: After reading 2, 7, and 13, your program should
print 20.”

18

Conclusion

I Validation of the implementation’s core by relating it to
the much simpler accept-function

I Cross validation of artifacts ensures consistent exercise
tasks

I Both approaches still work if the framework is extended
(e.g. enriching the specification language)

I Implementation available at
https://github.com/fmidue/IOTasks

19

https://github.com/fmidue/IOTasks

Conclusion

I Validation of the implementation’s core by relating it to
the much simpler accept-function

I Cross validation of artifacts ensures consistent exercise
tasks

I Both approaches still work if the framework is extended
(e.g. enriching the specification language)

I Implementation available at
https://github.com/fmidue/IOTasks

19

https://github.com/fmidue/IOTasks

	Specification Framework
	Validating the Implementation
	Correctness of Testing Procedure
	Further Checks
	Exercise Creation Workflow

