Implementing, and Keeping in Check, a DSL Used in E-Learning

Oliver Westphal Janis Voigtländer

University of Duisburg-Essen

Context

- Programming paradigm course including teaching Haskell
- Automatic grading system for exercise tasks
- Domain specific language embedded in Haskell to easily specify and test correctness of solution candidates for I/O-Exercises¹
- Goal: Ensure the framework works as expected and keeps working when we extend it in the future
- Two perspectives
 - As implementer: Technical correctness
 - As instructor: Consistency of formulated exercises

¹Westphal, O., & Voigtländer, J. (2020). Describing Console I/O Behavior for Testing Student Submissions in Haskell, TFPIE 2019.

Specification Framework

Main Framework Concepts

- 1. Language of specifications
- 2. Notion of program traces
- 3. Acceptance criterion, relating specifications and traces
- 4. Testing procedure, checking adherence of programs to specifications

Check whether the set of traces described by a specification contains all traces produced by a program

Specifications

- Read values, storing them in history-valued variables
- Output result of computation over variables
- Access variables either as a list of all values (A) or the most current value (C)
- Basic branching and iteration

$$[\triangleright n]^{\mathbb{N}} \cdot ([\triangleright x]^{\mathbb{Z}} \angle len(x_A) = n_{C \perp} \mathbf{E})^{\rightarrow^{\mathbf{E}}} \cdot [\{sum(x_A)\} \triangleright]$$

$$\uparrow$$

"Read a positive integer n from the console, and then read n integers one after the other and finally output their sum."

Traces

Definition (Trace)

A trace is a sequence $m_0v_0, m_1, v_1, \ldots, m_n, v_n$, stop \in Tr, where $n \in \mathbb{N}, m_i \in \{?, !\}$ and $v_i \in \mathbb{Z}$.

```
Example: ?2 !3 !8 stop
```

Definition (Generalized Trace)

A trace is a sequence $m_0V_0, m_1, V_1, \ldots, m_n, V_n$, stop $\in Tr_G$, where $n \in \mathbb{N}, m_i \in \{?, !\}$ and $V_i \subseteq \mathbb{Z} \cup \{\varepsilon\}$.

Example: ?2 !{3, 6} !{ ε , 7} !{8} stop

Traces

Covering Relation

 $\prec \subseteq Tr \times Tr_G$

 $t < t_g$ iff t can be obtained by choosing one of the output options from each V_i in t_g .

Examples: ?2 !3 !8 stop \prec ?2 !{3,6} !{ ε ,7} !{8} stop ?2 !3 !8 stop $\not\prec$?2 !{3,6} !{7} !{8} stop ?2 !3 !8 stop $\not\prec$?4 !{3,6} !{ ε ,7} !{8} stop

Acceptance Criterion

accept (simpl.)

Let $s \in Spec$ and $t \in Tr$, accept(s, t) = True iff t is a valid program run with regard tothe behavior specified by s.

Examples: $s = [\triangleright n]^{\mathbb{N}} ([\triangleright x]^{\mathbb{Z}} \angle len(x_A) = n_{C \perp} \mathbf{E})^{\rightarrow^{\mathbf{E}}} [\{sum(x_A)\} \triangleright]$

accept(s, ?2 ?3 ?12 !15 stop) = True accept(s, ?2 ?3 ?12 !7 stop) = False accept(s, ?3 ?3 ?12 !15 stop) = False

Acceptance Criterion

Definition (accept)

```
Let s \in Spec and t \in Tr,
```

$$accept([\triangleright x]^{\tau} \cdot s', k)(t, \Delta) = \begin{cases} accept(s', k)(t', store(x, v, \Delta)) \\ , \text{ if } t = ?v t' \land v \in \tau \\ \text{False} \\ , \text{ otherwise} \end{cases}$$

. . .

k: continuation handling iteration contexts ∆: variable store for read values

cf. our TFPIE 2019 paper

Testing procedure

- Derive a function traceSet from accept by "solving" accept(s, k_l)(t, Δ_l) = True for t
- traceSet(s, k^T_l)(Δ_l) ⊆ Tr_G contains all generalized traces valid for s
- Testing a program p against specification s:
 - **1.** Sample $t_g \in Tr_G$ from $traceSet(s, k_l^T)(\Delta_l)$
 - 2. Extract input sequence from t_g
 - 3. Run *p* on these inputs $\rightarrow t \in Tr$
 - 4. Check whether $t < t_g$
- traceSet is more complicated to implement than accept but we need it for testing

Validating the Implementation

System Overview

Consistency of the framework depends on correctness of testing procedure

Goal

- 1. Establish correctness of testing procedure
- 2. Provide means to ensure overall consistency of tasks
 - ► Task Idea ↔ specification
 - Correctness of sample solution
 - Automatically create supporting material for verbal task descriptions
 - etc.

Correctness of Testing Procedure

Correctness of testing

- 1. Translate accept to Haskell (almost verbatim)
- 2. Establish correctness by code inspection
- 3. Validate (through testing) more involved testing procedure against accept-semantics:

Theorem

```
Let s \in Spec \text{ and } t \in Tr, then

accept(s, k_l)(t, \Delta_l) = True

iff

there exists a t_g \in traceSet(s, k_l^T)(\Delta_l) such that t \prec t_g.
```

Validation through testing is not a replacement for a proof but much easier to set up.

Test cases

Case 1: "⇒"

 $accept(s, k_l)(t, \Delta_l) = True$

 $\Rightarrow \exists t_g \in traceSet(s, k_l^T)(\Delta_l). t < t_g.$

Hard due to distribution of positive and negative cases. \rightarrow Unit testing needed.

Case 2: "⇐"

$$\exists t_g \in traceSet(s, k_l^T)(\Delta_l). t < t_g$$

 $\Rightarrow accept(s, k_I)(t, \Delta_I) = True$

No restrictions on *s* required, *t* with $t < t_g$ easily obtainable from t_g .

 \rightarrow Property based testing possible.

Side Note: Random Specifications

Main problem: Generating terminating iterations

- ▶ loop skeleton: $(s_1 \cdot (s_2 \angle s_3))^{\rightarrow^{E}}$
- ► condition-progress pair: (*c*, *s*^{*})
- two possible loops:

$$\blacktriangleright (S_1 \cdot (S_2^* \angle C \bot (S_3 \cdot \mathbf{E})))^{\rightarrow l}$$

•
$$(s_1 \cdot ((s_2 \cdot \mathbf{E}) \angle not(c) \bot s_3^*))^{\rightarrow \mathbf{E}}$$

(s_i^* : insert s^* (randomly) into s_i)

Examples

- Quality clearly depends on available functions and condition-progress-pairs
- But, unusual specifications can be desirable for testing

Further Checks

System Overview

Overall consistency of the framework allows for cross validation of different artifacts

Exercise Creation Workflow

Creating Artifacts

- Task idea: "We want students to realize a simple I/O loop, so they should write a program that reads a number and then as many further numbers and finally prints a sum."
- Task description: "Write a program which first reads a positive integer n from the console, then reads n integers one after the other, and finally outputs their sum"
- Specification:

 $[\triangleright n]^{\mathbb{N}}([\triangleright x]^{\mathbb{Z}} \angle len(x_A) = n_{C \perp} \mathbf{E})^{\rightarrow^{\mathbf{E}}} [\{sum(x_A)\} \triangleright]$

Sample solution:

main :: IO ()
main = ...

System Overview

Validating Artifacts

- Check whether sample solution and interpretation of the specification have matching behavior on some sample inputs
- Use testing procedure to check sample solution against specification itself
- Carefully inspect the task description
- Generate supporting material, e.g. example runs and add to task description: "Example: After reading 2, 7, and 13, your program should print 20."

Conclusion

- Validation of the implementation's core by relating it to the much simpler *accept*-function
- Cross validation of artifacts ensures consistent exercise tasks
- Both approaches still work if the framework is extended (e.g. enriching the specification language)

Conclusion

- Validation of the implementation's core by relating it to the much simpler *accept*-function
- Cross validation of artifacts ensures consistent exercise tasks
- Both approaches still work if the framework is extended (e.g. enriching the specification language)
- Implementation available at https://github.com/fmidue/IOTasks