
Language-Integrated Query
with Nested Data Structures

and Grouping

Rui Okura and Yukiyoshi Kameyama

FLOPS 2020 @ Online

Sep. 2020

1

Language-Integrated Query

with Nested Data Structures

and Grouping

What is Language-Integrated Query ?

Language-Integrated

Query

Language-Integrated Query

type qType = { name : string
price : int } list

[<EntryPoint>]
let main argv =

let db = Database.GetDataContext()

let q =
query { for p in db.Public.Products do

where (p.Price > 100)
yield { name = p.Name;

price = p.Price }
}

q |> Seq.iter (fun p ->
printfn “Name: %s Price: %d”

p.name p.price)

SELECT p.name AS name,
p.price AS price

FROM Products AS p
WHERE p.price > 100Query Expression

Programming Language (F#)

Query Language (SQL)

Query

Results

translation

DBMS

2

DBMS

Results

Query

=

transaction

Language-Integrated

Query

The Merit of Language-Integrated Query

type qType = { name : string
price : int } list

[<EntryPoint>]
let main argv =

let db = Database.GetDataContext()

let q =
query { for p in db.Public.Products do

where (p.Price > 100)
yield { name = p.Name;

price = p.Price }
}

q |> Seq.iter (fun p ->
printfn “Name: %s Price: %d”

p.name p.price)

SELECT p.name AS name,
p.price AS price

FROM Products AS p
WHERE p.price > 100Query Expression

Programming Language (F#)

Query Language (SQL)

Query

Results

translation

DBMS

3

DBMS

Results

Query

=

transaction

High level:

• composable

 easy to write

• more abstract

 Elegant

Plus

• nested data str.

Low level:
• not composable

• less abstract

4

Language-Integrated Query

with Nested Data Structures

and Grouping

What are Nested Data Structures ?

5

Language-Integrated Query
with Nested Data Structures

type QT1 = { pid : int
order : { pid : int

sales : int } list } list

type QT2 = { pid : int } list

let q1 : QT1 = for o in db.Public.Orders do
yield { pid = o.pid;

order = for p in db.Public.Products do
where (p.pid = o.pid)
yield { pid = p.pid;

sales = p.price * o.qty }
}

let q2 : QT2 = query { for x in q1 do
for y in x.order do
where (y.pid > 110)
yield { pid = y.pid * 100 }

}

Programming Language (F#)

nested data str.

table type =

list of records of basic types

N+1 Query Problem

DBMS

⋮
let q2 =
query { for x in q1 do

for y in x.order do
where (y.pid > 110)
yield { pid = y.pid * 100 }

}

SELECT o.*
FROM Orders AS oProgramming Language (F#)

6

SELECT p.pid * 100
AS pid

FROM Products AS p
WHERE p.pid > 110 AND

p.pid = 111

1 query

N queries

N+1 queries ….

①

②

① Results

② Results

SELECT p.pid * 100
AS pid

FROM Products AS p
WHERE p.pid > 110 AND

p.pid = 210

SELECT p.pid * 100
AS pid

FROM Products AS p
WHERE p.pid > 110 AND

p.pid = 310

Previous Work (1/2)

7

• Cooper 2009

• Proposed rewriting rules for Nested Relational Calculus

• Any closed term is normalized to a non-nested query, which

is translated to a single SQL query.

• Cheney, Lindley, Wadler 2013

• Formalized Cooper’s idea in typed 2-level language T-LINQ

• Example of rewriting rules:

• for y in (for x in L do M) do N

↪ for x in L do (for y in M do N)

Previous Work (2/2)

8

• Cooper 2009

• Proposed rewriting rules for Nested Relational Calculus (NRC)

[Bunemann]

• Any closed term is normalized to a non-nested query, which

is translated to a single SQL query.

• Cheney, Lindley, Wadler 2013

• Formalized Cooper’s idea in typed 2-level language T-LINQ

• Example of rewriting rules:

• for y in (for x in L do M) do N

↪ for x in L do (for y in M do N)

[Cooper 2009] [Cheney+ 2013]

“It is a future work / open problem to handle

aggregation and grouping.”

9

Language-Integrated Query

with Nested Data Structures

and Grouping

What are grouping in database queries ?

Grouping

name dept gpa

Suzuki Math 4.0

Sato CS 2.5

Takahashi CS 3.8

Tanaka Math 2.7

Ito CS 3.5

Students table

dept gpa_avg

Math 3.4

CS 3.3

Result table

SELECT s.dept AS dept,

AVG(s.gpa) AS gpa_avg

FROM Students AS s

GROUP BY s.dept

Grouping

= GROUP BY

and Aggregation in SQL

10

SUM, AVG, MAX, MIN, COUNT

E.g.)

Handling Grouping

The N+1 problem for grouping has no solution in

the original setting.

11

SELECT MAX(z.gpa_avg) AS result
FROM (SELECT s.class AS class,

s.dept AS dept,
AVG(s.gpa) AS gpa_avg

FROM students AS s
GROUP BY s.class, s.dept) AS z

GROUP BY z.dept

Fact: several important SQL allow subqueries

(nested control structures)
e.g. PostgreSQL and MySQL

 We can translate the above query to a single

SQL query in such SQLs.

There’s no single operation
for taking AVG-MAX!

This work

12

Language-

integrated query

Target SQL N+1 query problem

without grouping

and aggregation

No nested control str.

No nested data str.

Solved
[Cooper2009]

[Cheney et al.2013]

with grouping and

aggregation

No nested control str.

No nested data str.
No solution

with grouping and

aggregation

Allows nested control str.

No nested data str.
This work

The N+1 query problem: Given a closed query of a table type, can we always

translate it to an equivalent, single SQL query?

Non-solution (naïve approach)

13

gfor (𝑥 ← for(𝑦 ← table 𝑡)
yield { 𝑎 = 𝑦. 𝑎;

𝑏 = 𝑐 = 𝑦. 𝑏 } ; 𝑎)
yield { result = SUM(𝑥. 𝑏. 𝑐) }

Introducing a primitive for grouping: gfor 𝑥 ← 𝐿 ; key 𝑁

• No effective transformation for gfor 𝑥 ← for 𝑥 ← 𝐿 𝑀;𝐾 𝑁

• Hence, nested data structure remains as intermediate data.

 This query can not be translated to SQL.

※ gfor 𝑥 ← for 𝑥 ← 𝐿 𝑀;𝐾 𝑁
↪ for 𝑥 ← 𝐿 gfor 𝑥 ← 𝑀;𝐾 𝑁

Hint from the naïve approach

14

gfor (𝑥 ← for(𝑦 ← table 𝑡)
yield { 𝑎 = 𝑦. 𝑎;

𝑏 = 𝑐 = 𝑦. 𝑏 } ; 𝑎)
yield { result = SUM(𝑥. 𝑏. 𝑐) }

grouping
by a

for extract
x.b.c

aggregate
by SUM

construct
output

gfor

Construction of
nested data

Destruction of
nested data

The construction-destruction pair of nested data should be eliminated.

It is not eliminated because the gfor primitive is a barrier between the two.

Construction of
nested data

Destruction of
nested data

Barrier

Hint from the naïve approach

15

grouping
by a

for extract
x.b.c

aggregate
by SUM

construct
output

gfor

We can swap the first two operations (their order does not matter).

Construction of
nested data

Destruction of
nested data

Barrier

grouping
by a

for extract
x.b.c

aggregate
by SUM

construct
output

gfor

Construction of
nested data

Destruction of
nested data

Barrier

We can eliminate the construction-destruction pair.

Key idea (1/2)

16

• Decomposing GROUP BY into small pieces:

input grouping and aggregation output

New grouping primitive ⟹ grouping & aggregation only

GROUP BY ⟹ input + grouping & aggregation part + output part

These parts can be expressed by the existing primitives

input grouping and aggregation output

Key idea (2/2)

17

Operation

with grouping

Operation

with grouping

In Out In Out

Operation

without grouping

SQL with Nested Control Structures

Operation

without grouping

Operation

without grouping

groupinggrouping

groupingIn Outgrouping

Decompose Decompose

Normalize

SQL translation

Flat Data Structures

Nested Data Structures

Quel : Base Language

18

Syntax

Terms 𝐿,𝑀,𝑁 ∷= 𝜆𝑥.𝑀 𝑀 𝑁 ⨁ ഥ𝑀 𝑥 𝑐 for 𝑥 ← 𝑀 𝑁 where 𝐿 𝑀

yield𝑀 exists𝑀 table 𝑡 | 𝑙 = 𝑀 | 𝐿. 𝑙

Types

Base types 𝑂 ∷= 𝐼𝑛𝑡 𝑆𝑡𝑟𝑖𝑛𝑔 𝐵𝑜𝑜𝑙

Types 𝐴 ∷= 𝑂 𝐴 → 𝐵 | Bag 𝐴 𝑙 ∶ 𝐴

SELECT N
FROM M AS x
WHERE L

for 𝑥 ← table(𝑀)
where 𝐿
yield 𝑁

E.g.)

translation

𝛤 ⊢ 𝑀 ∶ Bag 𝐴 𝛤, 𝑥 ∶ 𝐴 ⊢ 𝑁 ∶ Bag 𝐵

𝛤 ⊢ for 𝑥 ← 𝑀 𝑁 ∶ Bag 𝐵

Typing rule of for-operator

Quelg : Quel + Aggregation + Grouping

19

Syntax

Terms 𝐿,𝑀,𝑁 ∷= … | 𝒢 𝜅, 𝛼 (𝐿)

A-Spec 𝛼 ∷= {(𝑙, ⊚, 𝑙′)}

SELECT ⊚(y.l) AS l’
FROM M AS y

GROUP BY y.k

𝒢(𝜅, 𝛼) table(𝑀)

where 𝛼 = {(𝑙,⊚, 𝑙′)}

E.g.)

translation

Typing rule of 𝒢-operator

Quelg : Quel + Aggregation + Grouping

20

Theorem.

1. Normalization rules for Quelg preserve typing, namely, 𝛤 ⊢ 𝐿 ∶ 𝐴 and
𝐿 ⇝ 𝑁, then 𝛤 ⊢ 𝑀 ∶ 𝐴. (Subject Reduction)

2. For any typable term, normalization weakly terminates, namely, if 𝛤 ⊢
𝐿 ∶ 𝐴, then there is a normal form 𝑁 such that 𝐿 ⇝ 𝑁. (Weak

Normalization)

3. Suppose 𝑁 is a normal form, ⋅ ⊢ 𝑁 ∶ 𝐹 is derivable where 𝐹 is a table

type. Then its type derivation contains only subtypes of table types.

(Subformula Property)

We proved the following theorem.

Example of normalization (1/2)

21

gfor (𝑥 ← for(𝑦 ← table 𝑡)
yield { 𝑎 = 𝑦. 𝑎;

𝑏 = 𝑐 = 𝑦. 𝑏 } ; 𝑎)
yield { result = SUM(𝑥. 𝑏. 𝑐) }

𝒢(𝑓, 𝛼)(for(𝑥 ← for(𝑦 ← table 𝑡)

yield { 𝑎 = 𝑦. 𝑎;
𝑏 = 𝑐 = 𝑦. 𝑏 })

yield { 𝑓 = 𝑥. 𝑎, 𝑔 = 𝑥. 𝑏. 𝑐 })
where 𝛼 = {(𝑔, SUM, result)}

𝒢(𝑓, 𝛼)(for(𝑦 ← table 𝑡)

for(𝑥 ← yield { 𝑎 = 𝑦. 𝑎;
𝑏 = 𝑐 = 𝑦. 𝑏 })

yield { 𝑓 = 𝑥. 𝑎, 𝑔 = 𝑥. 𝑏 })
where 𝛼 = {(𝑔, SUM, result)}

Example of normalization (2/2)

22

𝒢(𝑓, 𝛼)(for(𝑦 ← table 𝑡)

yield { 𝑓 = { 𝑎 = 𝑦. 𝑎; 𝑏 = 𝑐 = 𝑦. 𝑏 }. 𝑎,
𝑔 = 𝑎 = 𝑦. 𝑎; 𝑏 = 𝑐 = 𝑦. 𝑏 . 𝑏. 𝑐 })

where 𝛼 = {(𝑔, SUM, result)}

𝒢(𝑓, 𝛼)(for(𝑦 ← table 𝑡)

for(𝑥 ← yield { 𝑎 = 𝑦. 𝑎;
𝑏 = 𝑐 = 𝑦. 𝑏 })

yield { 𝑓 = 𝑥. 𝑎, 𝑔 = 𝑥. 𝑏. 𝑐 })
where 𝛼 = {(𝑔, SUM, result)}

𝒢(𝑓, 𝛼)(for(𝑦 ← table 𝑡)

yield { 𝑓 = 𝑦. 𝑎;
𝑔 = 𝑦. 𝑏 })

where 𝛼 = {(𝑔, SUM, result)}

SELECT SUM(x.g) AS result
FROM (SELECT y.a AS f,

y.b AS g
FROM t AS y) AS x

GROUP BY x.f

Implementation & Experiments

23

• We have extended Suzuki et al.’s tagless-final

implementation for Quel to Quelg:

• Tagless final = type-preserving embedding of DSL

[Kiselyov et al.]

• We have conducted experiments with quries:
• Queries with nested grouping and aggregation

• Generated SQL queries < 15 lines

• We have compared the performance of ours with
Microsoft’s LINQ in F#.

Q5 in the Experiment

24

𝑄5
′ = 𝜆 𝑝. 𝒢(oid, 𝛼) (for 𝑜 ← table(“orders”)

where 𝑝(𝑜. qty)
yield 𝑜)

where 𝛼 = {(qty, COUNT, qty_count)}

𝑄5 = 𝑄5
′ (𝜆 𝑥. 𝑥 > 2)

SELECT x.oid AS oid, COUNT(x.qty) AS qty_count
FROM (SELECT o.*

FROM orders AS o
WHERE o.qty > 2) AS x

GROUP BY x.oid

Performance

25

Quelg LINQ (F#)

SQL generation time Execution time of SQL Execution time of SQL Depth

Q1 0.029 ms 16.186 ms 14.781 ms 1

Q2 0.101 ms 14.067 ms 15.129 ms 2

Q3 1.148 ms 4.356 ms Not Available 3

Q4 0.074 ms 0.952 ms 1.787 ms 3

Q5 0.196 ms 7.409 ms Not Available 3

Q6 0.427 ms 14.143 ms Not Available 2

Q7 0.043 ms 11.255 ms 9.556 ms 4

Q8 5.590 ms 18.041 ms 20.690 ms 4

Q9 9.310 ms 3732.620 ms Avalanche 4

• SQL generation time : time for normalization and SQL translation.

• Execution time of SQL : time to get results for generated SQL.

• Depth : the number of subqueries.

the number of rows of each tables is 10000

Summary

26

• We have designed an extension of simplified

T-LINQ which is:

• Able to express GROUP BY as macros.

• Able to normalize to a query without Nested Data
Structures.

• Thus solving the GROUP BY problem in the presence
of Nested Control Structures (but no Nested Data
Structures).

• Our result is close to Wong and Libkin’s
theoretical work on classic database theory, but
we are more practical.

