Language-Integrated Query
with Nested Data Structures
and Grouping

Rui Okura and Yukiyoshi Kameyama

FLOPS 2020 @ Online ﬁ@@

Sep. 2020 BT




What is Language-Integrated Query ?

L

Language-Integrated Query



Language-Integrated Query

Query
Language-Integrated |
transaction
Query ¢
Results
Programming Language (F#)
type qType = { name : string
price : int } list Query Language (SQL)
[<EntryPoint>] : SELECT p.name AS name,
let main argv = translation p.Er‘ice AS price
let db = Database.GetDataContext() FROM Products AS p
let g = Query Expression WHERE p.price > 100

query { for p in db.Public.Products do 1
where ( p.Price > 100 )

yield { name = p.Name; Query
price = p.Price } = fefecececcrceriiiiiiinnn Bt
}
q |> Seq.iter (fun p ->
printfn “Name: %s Price: %d” Results
p.name p.price)




The Merit of Language-Integrated Query

Query
Language-Integrated
Query <
Results
Programming Language (F#)
High level: Query Language (SQL)
* composable Low level:
—> easy to write * not composable
 more abstract * less abstract

:> Elegant ...................................................
Plus
 nested data str.



with Nested Data Structures
/.

What are Nested Data Structures ?



Language-Integrated Query
with Nested Data Structures

Programming Language (F#)

type QT1 = id : int
ype Q { Er'der' . { pid : int nested data str.
sales : int } list } list
type QT2 = { pid : int } list t_able type = _
list of records of basic types
let g1 : QT1 = for o in db.Public.Orders do
yield { pid = o.pid;
order = for p in db.Public.Products do
where ( p.pid = o.pid )
yield { pid = p.pid;
sales = p.price * o.qty }
}
let g2 : QT2 = query { for x in gl do

for y in x.order do

where (y.pid > 110)

yield { pid = y.pid * 100 }
}



N+1 Query Problem

1 query
. SELECT o0.*
Programming Language (F#) @ FROM Orders AS o
let g2 =
query { for x in gl do @ Results
for y in x.order do
where (y.pid > 110) (2 Results

yield { pid = y.pid * 100 }

} <:ii;;3 P sy v ann II
@ SELECT p.pid * 100 ﬁ
J AS pid
FROM Products AS p
WHERE p.pid > 110 AND

p.pid = 310

N queries

N+1 queries ....




Previous Work (1/2)

* Cooper 2009

» Proposed rewriting rules for Nested Relational Calculus

* Any closed term is normalized to a non-nested query, which

IS translated to a single SQL query.

* Cheney, Lindley, Wadler 2013
« Formalized Cooper’s idea in typed 2-level language T-LINQ
« Example of rewriting rules:

e for vin (for x in L do M) do N

s for X in L.do (for yin M do N)




Previous Work (2/2)

[Cooper 2009] [Cheney+ 2013]
“It is a future work / open problem to handle
aggregation and grouping.”




Language-Integrated Query
with Nested Data Structures
and Grouping

]

What are grouping in database queries ?



Grouping

Students table

name dept gpa Result table
Suzuki Math 4.0 dept gpa_avg
Sato CS 2.5 Math 3.4

Takahashi CS 3.8 CS 3.3

Tanaka Math 2.7

Ito CS 3.5 : :

...... : Grouping
......... = GROUP BY

SELECT s.dept AS dept, and Aggregation in SQL

AVG(s.gpa) AS gpa_avg E.g) @
FROM Students AS s SUM, AVG, MAX, MIN, COUNT

GROUP BY s.dept
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Handling Grouping

The N+1 problem for grouping has no solution In
the original setting.

SELECT MAX(z.gpa avg) AS result
FROM (SELECT s.class AS class,
s.dept AS dept,
AVG(s.gpa) AS gpa_avg There’s no single operation
FROM students AS s for taking AVG-MAX!
GROUP BY s.class, s.dept) AS z
GROUP BY z.dept

Fact: several important SQL allow subqueries

(nested control structures)
e.g. PostgreSQL and MySQL

= We can translate the above query to a single
SQL query in such SQLs.
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This work

Language- Target SQL N+1 query problem

integrated query

without grouping No nested control str. [CSO|V29(§109]
i ooper
and aggregation No nested data str. [Cheney et al.2013]
with grouping and No nested control str. _
aggregation No nested data str. No solution

with grouping and | Allows nested control str.

) This work
aggregation No nested data str.

The N+1 query problem: Given a closed query of a table type, can we always
translate it to an equivalent, single SQL query?

12



Non-solution (naive approach)

Introducing a primitive for grouping: dfor (x < L; key) N

gfor (x < for(y < table(t))
yield { a = y.a;
b=1{c=yb}};a)
yield { result = SUM(x.b.c) }

' I » No effective transformation for gfor (x « for(x « L) M;K) N

« Hence, nested data structure remains as intermediate data.

= This query can not be translated to SQL.

X gfor (x « for(x « L) M;K) N
% for(x « L) gfor (x « M;K) N
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Hint from the nailve approach

Construction of }
gfor (x < for(y « table(t)) nested data

yield { a = y.a;
b={c=y.b}};a)

yield { result = SUM(x. b.c)_} R— }
\L nested data

The construction-destruction pair of nested data should be eliminated.
It is not eliminated because the gfor primitive is a barrier between the two.

S
4 gfor )
for S grouplng extract aggregate | construct
bV a  xbc |l bySUM output || E

J

Construction of

nested data nested data

Destruction of }
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Hint from the nailve approach

)
4 gfor )
for S grouplng extract aggregate | construct
by a ixbc |l bySUM output | E
J
Construction of Destructlon of
nested data nested data
We can swap the flrst two operations (their order does not matter).
)
4 gfor )
for extract grouping | aggregate construct
—> -
1 x.b.c by a by SUM | output —
\_ J

\\\\
Construction of Destruction of
nested data nested data

|

We can eliminate the construction-destruction pair.
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Key idea (1/2)
 Decomposing GROUP BY into small pieces:

GROUP BY = input + grouping & aggregation part + output part

------------------------------------------------------------------------------------------------------------------------------

________________________________________________________________________________________________________________________________________

__________________________________________________________________________

Input ; grouping and aggregation output |——

These parts can be expressed by the existing primitives
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Flat Data Structures

_________________________________

_________________________________

Nested Data Structures

........ | Operation | Operation | Operation
\_/_Vlth grouping | without grouping | | with grouping |
| A
J Decompose ‘ ' _Decompose
Operation
. ) —— | ..........
_____ 1 orouping i+~ OU [ itnoui grouping [ 1" ._____‘t’__r_?_‘i?_'_r_‘__g_____ —
\ Normalize ]
|
: Operaton | |1 — ]
e |n s FOUDINQ *%ccceeccccccccne ! . feescccccces o oo oo
grouping Wlthoutgrouplng_l [ - g rouplngﬁ Out

____________________________

@ SQL translation

SQL with Nested Control Structures
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Quel : Base Language

_ Typing rule of for-operator

Types r~M:BagA I, x:A +N:BagB
Base types O ::= Int | String| Bool I'+for(x « M) N :Bag B
Types A==0|A->B|BagA|{l: 4} L 4

Syntax

Terms L, M,N == Ax.M | M N| ®(i)| x | ¢ | for(x < M) N | where L M
| yield M | [] | exists M | table(t) | {{ = M} | L.l

E.g.)

for(x < table(M)) : SELECT N
where L translation FROM M AS X

yield N WHERE L
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Quelg : Quel + Aggregation + Grouping

E.g.)

Syntax
Terms L,M,N = .. |G o(L)
A-Spec a == {(I, ®, 1)}

Typing rule of G-operator

GROUPING
I'-L:Bag{ri:0:0;:0"} k={L} a={li,o,l')} ® :BagO:— O,

I'F g(,{ﬂ_)(L) : Bag {ri : O3, 1l : O}

SELECT @(y.1l) AS 1°
b0n. ) (able () translation FROM M AS()): )

h ={(L0©,! slati
uluilie LLA0) GROUP BY y.k
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Quelg : Quel + Aggregation + Grouping

We proved the following theorem.

1. Normalization rules for Quelg preserve typing, namely, I' - L : A and
L w» N, thenl" - M :A. (Subject Reduction)

2. For any typable term, normalization weakly terminates, namely, if I" -
L : A, then there is a normal form N such that L w» N. (Weak
Normalization)

3. Suppose N is a normal form, -+ N : F is derivable where F is a table

type. Then its type derivation contains only subtypes of table types.
(Subformula Property)
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Example of normalization (1/2)

gfor (x < for(y < table(t))
yield { a = y.a;
b={c=yb}};a)
yield { result = SUM(x. b.c) }

G(r, a)(for(x < for(y < table(t))
yield { a = y.a;

b={c=y.b}})
yield{f =x.a, g=x.b.c})
where a = {( g, SUM, result)}

~ -

g(f, Q) (for(y — table(t))
for(x < yield{a = y.aq;
b={c=y.b}})

yield{f =x.a, g=x.b})
where a = {( g, SUM, result)}
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Example of normalization (2/2)

g(f, a)(fOI"(y — table(t))
for(x < yield{a =y.aqa;
b={c=y.b}})
vield{f =x.a, g=x.b.c})
where a = {( g, SUM, result)}

~ -

g(f, a)(for(y — table(t))

yield{f ={a=y.a; b={c=y.b}}].q,
g=1{a=y.a; b={c=y.b}}b.c})
where a = {( g, SUM, result)}

~~

G(r, a)(for(y < table(t)) SELECT SUM(x.g) AS result
. FROM (SELECT y.a AS f,
yield { f = y. a; $ v.a 85 ¢
g=y.b}) FROM t AS y) AS x
where a = {( g, SUM, result)} GROUP BY x.f
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Implementation & Experiments

* We have extended Suzuki et al.’s tagless-final

Implementation for Quel to Quelg:

» Tagless final = type-preserving embedding of DSL
[Kiselyov et al.]

* We have conducted experiments with quries:
* Queries with nested grouping and aggregation
« Generated SQL queries < 15 lines

* We have compared the performance of ours with
Microsoft’'s LINQ in F#.
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Q5 In the Experiment

Q: = Ap. G oid, o) (for(o < table(“orders”))

where p(o.qty)
yield o)
where a = {( qty, COUNT, qty_count )}

Qs =Qc (Ax. x>2)

SELECT x.oid AS oid, COUNT(x.qty) AS gty count
FROM (SELECT o.*

FROM orders AS o

WHERE o.qty > 2) AS x
GROUP BY x.oid
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Performance
| ouelg | uNe® |

- SQL generation time Execution time of SQL | Execution time of SQL Depth

0.029 ms 16.186 ms 14.781 ms
Q2 0.101 ms 14.067 ms 15.129 ms 2
Q3 1.148 ms 4.356 ms Not Available 3
Q4 0.074 ms 0.952 ms 1.787 ms 3
Q5 0.196 ms 7.409 ms Not Available 3
Q6 0.427 ms 14.143 ms Not Available 2
Q7 0.043 ms 11.255 ms 9.556 ms 4
Q8 5.590 ms 18.041 ms 20.690 ms 4
Q9 9.310 ms 3732.620 ms Avalanche 4

the number of rows of each tables is 10000

« SQL generation time : time for normalization and SQL translation.
» Execution time of SQL : time to get results for generated SQL.
* Depth : the number of subqueries.
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Summary

* We have designed an extension of simplified

T-LINQ which is:
» Able to express GROUP BY as macros.

« Able to normalize to a query without Nested Data
Structures.

* Thus solving the GROUP BY problem in the presence
of Nested Control Structures (but no Nested Data
Structures).

* Our result is close to Wong and Libkin’s
theoretical work on classic database theory, but
we are more practical.



