
An Efficient Composition of Bidirectional Programs
by Memoization and Lazy Update

Kanae Tsushima 1,2, Bach Nguyen Trong 1,2, Robert Glück 3, Zhenjiang Hu 4

15th International Symposium on Functional and Logic Programming

Sep 14-16, 2020

1 National Institute of Informatics, Tokyo, Japan
2 The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan

3 University of Copenhagen, Copenhagen, Denmark
4 Peking University, Beijing, China

Presenter: Bach Nguyen Trong

Bidirectional Transformation

• Bidirectional transformation (BX):
• a means to synchronize – or maintain consistency – between multiple

representations of related and often overlapping information
• when a representation is modified, the others may need updating to restore

the consistency

• Applications:
• databases (eg. the view update problem, ...)

• user interface design (eg. synchronizing between different graphical layouts, ...)

• model-driven development (eg. synchronizing between UML and source code, ...)

• ...

2

• BX comprises 2 transformations: forward and backward transformations

3
[*] Foster et al. 2007, Combinators for Bidirectional Tree Transformations: A Linguistic Approach to the View-update Problem, TOPLAS

BX : Source Domain ⟷ View Domain

[get] [put]

get

put

source view

update

updated viewupdated source

s v

v’s’

Bidirectional Transformation

4

Example: phead

getphead [1,2,3] = 1
putphead [1,2,3] 100 = [100,2,3]

phead: [Int] ⟷ Int
getphead s = head s
putphead s v’ = v’ :: tail s

[1,2,3] 1

100[100,2,3]

get

put

update

s v

v’s’

5

put s (get s) = sGetPut

[no change to the view should be reflected as no change in the source]

get (put s v’) = v’PutGet

[the updated view can be recovered by applying get to the updated source]

[*] Foster et al. 2007, Combinators for Bidirectional Tree Transformations: A Linguistic Approach to the View-update Problem, TOPLAS

A BX is well-behaved if get and put obey GetPut and PutGet

Well-behaveness [*]

• Semantics and correctness have been investigated intensively during the past years
• Bohannon et al., Relational Lenses: A Language for Updatable Views, PODS’06
• Bohannon et al., Boomerang: Resourceful Lenses for String Data, POPL’08
• Cicchetti et al., JTL: A Bidirectional and Change Propagating Transformation Language, SLE’10
• Leblebici et al., Developing eMoflon with eMoflon, ICMT’14
• Ko et al., BiGUL: A Formally Verified Core Language for Putback-based Bidirectional Progr., PEPM’16
• Ko et al., An Axiomatic Basis for Bidirectional Programming, POPL’18
• Van-Dang et al., Programmable View Update Strategies on Relations, VLDB’20

• Efficiency and optimization have not yet been fully understood
• Horn et al., Incremental Relational Lenses, ICFP’18

6

Research on Bidirectional Transformation

This talk: an efficient composition of bidirectional programs

7

• Given bx1 and bx2 are BXs.
• Composition bx1 õ bx2 is defined by:

[unlike traditional function compositions, a composition of BXs is read left-to-right]

Composition of BXs

s i

i’s’

update

v

v’

bx1
get bx2

get

bx1
put bx2

put

bx1 õ bx2
get s = (s)

bx1 õ bx2
put s v’ = s ((s) v’)

bx2
get bx1

get

bx1
put bx2

put
bx1

get

8

Inefficiency Issue of Left-associative Comp.

Evaluating putleft_bx_n requires reevaluating same several times
for getting intermediate results

left_bx_n = ((...((bx1 õ bx2) õ bx3) ... õ bxn-2) õ bxn-1) õ bxn

s i1

s’

bx1
get bx2

get

bx1
put bx2

put

in-2 in-1

bxn-1
get

bxn-1
put

bx3
get

bx3
put

…
bxn-2

get

bxn-2
put

… v’
bxn

put

i2

i1 in-2 in-1i2’ ’ ’ ’

bxi
get

O(n2) bxi
get

9

• Change associativity in composition (if #comp. is fixed)

left_bx_n = ((...((bx1 õ bx2) õ bx3) ... õ bxn-2) õ bxn-1) õ bxn

=> right_bx_n = bx1 õ (bx2 õ (bx3 õ ... (bxn-2 õ (bxn-1 õ bxn))...))

Naive Solution

Evaluating putright_bx_n requires no reevaluation of same bxi
get

O(n) bxi
get

s i1

s’

bx1
get bx2

get

bx1
put bx2

put

in-2 in-1

bxn-1
get

bxn-1
put

bx3
get

bx3
put

…
bxn-2

get

bxn-2
put

… v’
bxn

put

i2

i1 in-2 in-1i2’ ’ ’ ’

10

• Not always possible to transform from a left-associative comp.
to a right-associative comp.

• Eg: bfoldr (bidirectional version of foldr)

bfoldr bf ... = ... (... bfoldr ...) õ bf ...

bfoldr is inherently left-associative comp.

• Eg: breverse: [Int] ⟷ [Int] (bidirectional version of reverse)

breverse ... = ... bfoldr bsnoc …

Limitation

foldr :: (a → b → b) → b → [a] → b
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

reverse = foldr snoc []

11

Our Work

• Propose 2 solutions to avoid redundant reevaluation by

• S1: Memoization

• S2: Tupling + Lazy update

12

• Save intermediate results when evaluating a comp. in a key-value table:

Solution 1: Memoization

• Require times for manipulating (inserting, searching, ...) data in the table

s i1

s’

bx1
get bx2

get

bx1
put bx2

put

in-2 in-1

bxn-1
get

bxn-1
put

bx3
get

bx3
put

…
bxn-2

get

bxn-2
put

… v’
bxn

put

i2

i1 in-2 in-1i2’ ’ ’ ’

• value = getbx s• key = (bx, s)

+ Cost(manipulating data in table)O(n) bxi
get

13

• Tupling put and get then evaluating them at the same time
possibly avoid recomputing

Solution 2: Tupling + Lazy Update

(s’ , v) ⇐ pgbx (s , v’)

(ks’ , kv , s’ , v) ⇐ cpgbx (ks , kv’ , s , v’)

Tupling

Tupling + Lazy update

[ks, kv, ks’, kv’ are continuations holding modified info. on s, v, s’, v’ resp.]

pgbx (s , v’) = (putbx s v’ , getbx s)

14

Using pg to evaluate (...((bx1 õ bx2) õ bx3)... õ bxn-1) õ bxn requires:

Tupling : pg

O(2n) pg + Cost(keeping complements c)

pgbx (s , v’) = (putbx s v’ , getbx s)

pgbx1 õ bx2 (s , v’) =
(c , i) ⇐ pgbx1 (s, d)
(i’ , v) ⇐ pgbx2 (i , v’)
(s’ , d’) ⇐ pgbx1 (c , i’)

(s’ , v)

[⇓] definitions + restrictions

15

cpgbx1 õ bx2 (ks , kv’, s , v’) =
(kc , ki , c , i) ⇐ cpgbx1 (ks , id , s , d)
(ki’ , kv , i’, v) ⇐ cpgbx2 (ki , kv’ , i , v’)

(kc o ki’ , kv , kc i’ , v)

Tupling + Lazy Update : cpg

pgbx1 õ bx2 (s , v’) =
(c , i) ⇐ pgbx1 (s, d)
(i’ , v) ⇐ pgbx2 (i , v’)
(s’ , d’) ⇐ pgbx1 (c , i’)

(s’ , v)

2 pgbx1 + 1 pgbx2

O(2n) pg
+ Cost(keeping complements)

1 cpgbx1 + 1 cpgbx2 + 1 func. app.

O(n) cpg
+ Cost(manipulating data)

(s’ , v) ⇐ pgbx (s , v’) (ks’ , kv , s’ , v) ⇐ cpgbx (ks , kv’ , s , v’)

16

Tupling + Lazy Updates + Other Optimizations: xpg

cpgbx1 õ bx2 (ks , kv’, s , v’) =
(kc , ki , c , i) ⇐ cpgbx1 (ks , id , s , d)
(ki’ , kv , i’, v) ⇐ cpgbx2 (ki , kv’ , i , v’)

(kc o ki’ , kv , kc i’ , v)

O(n) cpg + Cost(manipulating data)

reduced by doing
lazy evaluation + additional optimizations

The last optimized evaluation function: xpg

17

Experiment

• Target language: core bidirectional language: minBiGUL
• a very-well-behaved subset of BiGUL [*]

• untyped

• OCaml 4.07.1

• MacOS 10.14.6, Intel Core i7 (2.6 GHz), RAM 16 GiB 2400 MHz DDR4

[*] Ko et al., BiGUL: A Formally Verified Core Language for Putback-based Bidirectional Programming, PEPM’16

18

Results

evaluation time (secs) against #comp

straight line: (...((bx1 õ bx2) õ bx3) ... õ bxn-1) õ bxn recursive comp.

small
input

large
input

most effective method when evaluating backward trans. of left-associative comp.?
• small input: S1: putm
• large input: S2: xpg

19

• Inefficiency issue:
• evaluating put of a left-assoc. comp. requires to reevaluating

same gets

• Naive solution:
• transforming from left-assoc. comp. to right-assoc. comp.
• be not always possible

• Main work:
• optimize evaluation of the backward transformation of left-

assoc. comp. using memoization and lazy update

Summary

20

• Introduce an automatic analysis about BX programs and inputs to
choose best evaluation method

• Overcome current restrictions

• Use lazy language to get laziness for free

Future Work

21

Any Questions?

