Restriction on cut in cyclic proof system for symbolic heaps

> Kenji Saotome (Nagoya) Koji Nakazawa (Nagoya) Daisuke Kimura (Toho)

This Talk

- Cyclic-Proof System for Separation Logic
 - Sequent-calculus style proof system
 - For automated inductive reasoning
 - Cut elimination fails

 Can we restrict?
- We show cuts cannot be restricted to presumable cuts
 - a cut formula is presumable if it may occur in cut-free proof segments of the goal sequent

Separation Logic [Reynolds 2002]

- Extension of Hoare logic
 - to verify programs manipulating heap memories
 - with inductive predicates
 to represent recursively structured data such as lists and trees
 e.g.) ls(x, y) ... list segment from x to y
- We have to tackle some problems
 - Loop invariant detection
 - Entailment checking

e.g.)

$$ls(x,z) * ls(z,y) \vdash ls(x,y)$$

Separation Logic [Reynolds 2002]

- Extension of Hoare logic
 - to verify programs manipulating heap memories
 - with inductive predicates
 to represent recursively structured data such as lists and trees
 e.g.) ls(x, y) ... list segment from x to y
- We have to tackle some problems
 - Loop invariant detection
 - Entailment checking

e.g.)

 $ls(x,z) * ls(z,y) \vdash ls(x,y)$

Cyclic proof = sequent-calculus style proof [Brotherston+ 2006] with cyclic structure representing induction

 $ls(x,y) * ls(y,z) \vdash ls(x,z)$

Cyclic proof = sequent-calculus style proof [Brotherston+ 2006] with cyclic structure representing induction

Cyclic proof = sequent-calculus style proof [Brotherston+ 2006] with cyclic structure representing induction

$$\frac{ls(y,z) \vdash ls(y,z)}{\vdots} \qquad \frac{x \neq y \land x \mapsto x' \ast ls(x',y) \ast ls(y,z) \vdash x \neq y \land x \mapsto x' \ast ls(x',z)}{x \neq y \land x \mapsto x' \ast ls(x',y) \ast ls(y,z) \vdash ls(x,z)} (PR)$$

$$\frac{ls(x,y) \ast ls(y,z) \vdash ls(x,z)}{ls(x,z)} (Case)$$

Cyclic proof = sequent-calculus style proof [Brotherston+ 2006] with cyclic structure representing induction

$$\frac{x \mapsto x' \vdash x \mapsto x' \quad ls(x', y) * ls(y, z) \vdash ls(x', z)}{i x \mapsto x' * ls(x', y) * ls(y, z) \vdash x \mapsto x' * ls(x', z)} \quad (*)$$

$$\vdots$$

$$\frac{x \neq y \land x \mapsto x' * ls(x', y) * ls(y, z) \vdash x \neq y \land x \mapsto x' * ls(x', z)}{i x \neq y \land x \mapsto x' * ls(x', y) * ls(y, z) \vdash ls(x, z)} \quad (PR)$$

$$\frac{ls(x, y) * ls(y, z) \vdash ls(x, z)}{i s(x, z)} \quad (Case)$$

Cyclic proof = sequent-calculus style proof [Brotherston+ 2006] with cyclic structure representing induction

$$\begin{array}{c} \overline{x \mapsto x' \vdash x \mapsto x'} & \overline{ls(x',y)} * ls(y,z) \vdash ls(x',z) \\ \hline x \mapsto x' * ls(x',y) * ls(y,z) \vdash x \mapsto x' * ls(x',z) \\ \hline \vdots \\ x \neq y \land x \mapsto x' * ls(x',y) * ls(y,z) \vdash x \neq y \land x \mapsto x' * ls(x',z) \\ \hline x \neq y \land x \mapsto x' * ls(x',y) * ls(y,z) \vdash ls(x,z) \\ \hline ls(x,y) * ls(y,z) \vdash ls(x,z) \\ \hline \\ \end{array}$$
(PR)

The length of ls(x', y) is shorter than ls(x, y)

The cycle represents a proof by induction

$A \vdash D$ $B \vdash E$ (*) $A \vdash C$ $C \vdash B$ $A * B \vdash D * E$ (*) $A \vdash B$ (cut)

- For (*), all formulas in premises can be found in the conclusion
- For (cut), the **cut formula C** is not in the conclusion

To find cut formulas is hard in automatic proof search

However...

Eliminating cut rule changes the provability[Kimura+ 2019]

Cut Restriction

Can we restrict cuts for cyclic-proof search?

Example : modal logic $S5^*$

$$\frac{A \vdash \mathbf{C} \quad \mathbf{C} \vdash B}{A \vdash B} \quad (\text{cut})$$

• *S*5^{*} does **not** enjoy cut elimination

[Ohnishi+ 1959]

- We can restrict cut formulas *C* to subformulas of *A* and *B* [Takano 1992]
- Such restriction is good for proof search

Can we restrict cuts in cyclic-proof system like $S5^*$?

It is hard to restrict cuts in cyclic-proof system for SL

- We define **presumable cut** for cut restriction
 - A cut is presumable if it may occur in cut-free proof segments of the conclusion (more relaxed restriction than $S5^*$)

$$\begin{array}{ccc} & & \mbox{main result} \\ CSL_1 ID^{\omega} & & CSL_1 ID^{\omega} \\ \mbox{w/o cut} & & & & \\ & & \end{tabular} & & \\ &$$

Cyclic-Proof System CSL_1ID^{ω}

SL₁: Separation Logic for Symbolic Heaps

- Formulas represent structures of heap memories
 - $x \mapsto y \cdots$ the heap contains exactly one memory cell of the address x which stores the value y
 - *emp* ... the heap contains no memory cells
 - $A * B \cdots$ the heap can be separated into two disjoint parts A and B

 $t ::= x \mid nil$

 $e ::= A \vdash A$

$$A ::= \Pi \land \Sigma \qquad \cdots \quad \text{symbolic heaps}$$
$$\Pi ::= \top \mid t = u \mid t \neq u \mid \Pi \land \Pi \quad \cdots \quad \text{pure formulas}$$

- $\Sigma ::= emp \mid t \mapsto u \mid \Sigma * \Sigma \mid P(\vec{t}) \cdots$ spatial formulas
 - ··· terms
 - ··· sequents

Examples of SL₁ **formula**

• $x \mapsto y * x \mapsto y$ is **not** satisfiable

Heap Model (s,h)

Store s: Variables $\rightarrow \mathbb{N}$ Heap h: $\mathbb{N} \setminus \{0\} \xrightarrow{fin} \mathbb{N}$

Example of heap

$$h(1) = 2, h(2) = 4, h(4) = 1$$

Semantics of SL_1 formulas

$$\begin{split} s,h &\vDash t \mapsto u \Leftrightarrow dom(h) = \{s(t)\} \& h(s(t)) = s(u) \\ s,h &\vDash A * B \Leftrightarrow \exists h_1,h_2. (h = h_1 \cup h_2, \text{ dom}(h_1) \cap \text{dom}(h_2) = \emptyset, \\ s,h_1 &\vDash A \ , s,h_2 &\vDash B) \end{split}$$

 $A \vdash B$ is valid iff $\forall s, h. (s, h \vDash A \Rightarrow s, h \vDash B)$

Inductive Definitions in SL₁

• ls(x, y) : list segment from x to y

$$ls(x, y) \coloneqq x = y \land emp$$

$$\mid \exists x' . (x \neq y \land x \mapsto x' * ls(x', y))$$

$$x' \longrightarrow y$$

• $ls^{3}(x, y, z)$: list segment from x to z containing y. $ls^{3}(x, y, z) \coloneqq x = y \land y = z \land emp$ $| \exists x'. (x = y \land y \neq z \land x \mapsto x' * ls^{3}(x', x', z))$ $| \exists x'_{x}(x \neq y \land x \mapsto x' * ls^{3}(x', y, z))$ $x' \longrightarrow y \longrightarrow z$

• $ls^3(x, y, z)$ is equivalent to ls(x, y) * ls(y, z)

CSL_1ID^{ω}

• Cyclic-proof system for SL_1

Inference rules

$$\frac{A \vdash C \quad C \vdash B}{A \vdash B} \quad (cut) \qquad \qquad \frac{A \vdash C \quad B \vdash D}{A * B \vdash C * D} \quad (*)$$

$$\frac{C_1(\boldsymbol{x}, \boldsymbol{y}_1) * A \vdash B \quad \cdots \quad C_n(\boldsymbol{x}, \boldsymbol{y}_n) * A \vdash B}{P(\boldsymbol{x}) * A \vdash B} \quad (Case) \quad \frac{A \vdash C_i(\boldsymbol{u}, \boldsymbol{t}) * B}{A \vdash P(\boldsymbol{u}) * B} \quad (PR)$$

for $P(\boldsymbol{x}) := \exists \boldsymbol{y}_1.C_1(\boldsymbol{x}, \boldsymbol{y}_1) \mid \cdots \mid \exists \boldsymbol{y}_n.C_n(\boldsymbol{x}, \boldsymbol{y}_n)$

Global Trace Condition [Brotherston+ 2006]

A cyclic-proof structure is really a proof if it satisfies the global trace condition

• Every infinite path contains

a trace unfolded infinitely many times

Cut Restriction to Presumable Cuts

Cut Restriction

$$\frac{A \vdash \mathbf{C} \quad \mathbf{C} \vdash B}{A \vdash B} \quad (\text{cut})$$

To find cut formulas is hard for proof search

• We cannot eliminate cut in CSL_1ID^{ω} [Kimura+ 2019]

Can we restrict cuts in CSL_1ID^{ω} ?

cf.) $S5^*$ can restrict cut formulas Cto subformulas of A and B

Presumable Cut

• **presumable formula** from $A \vdash B$

• **presumable cut** = cut with presumable cut formula

Definition (Quasi cut-elimination property)

If every $A \vdash B$ which is provable with cuts can be proved with only *presumable cuts*, we say that the proof system satisfies the quasi **cut-elimination property**

cf.) Modal logic $S5^*$ satisfies quasi cut-elimination property

Examples of presumable formulas

From the sequent $ls(x, z) * ls(z, y) \vdash ls(x, y)$

$$\frac{\Pi_2 \land x \mapsto w * ls(w, z) * ls(z, y) \vdash \Pi_1 \land x \mapsto y * ls(y, y)}{ls(x, z) * ls(z, y) \vdash \Pi_1 \land x \mapsto y * ls(y, y)} \text{Case}$$

$$\frac{ls(x, z) * ls(z, y) \vdash \Pi_1 \land x \mapsto y * ls(y, y)}{ls(x, z) * ls(z, y) \vdash ls(x, y)} \text{PR}$$

 Π_1 and Π_2 are pure parts

Presumable

$$ls(x,z) * ls(z,y), \qquad ls(x,y)$$

$$x \mapsto y, \qquad x \mapsto w * ls(w,z),$$

$$x \mapsto w * ls(w,z) * ls(z,y), \dots$$

Not presumable

$$ls(x,z) * ls(z,w) * ls(w,y)$$

Main Theorem

• Theorem

 CSL_1ID^{ω} does not satisfy quasi cut-elimination property

• Proof

Counterexample : $ls^3(x, y, x) \vdash ls^3(y, x, y)$

- 1. We can prove $ls^3(x, y, x) \vdash ls^3(y, x, y)$ with cuts
- 2. There is no proof of $ls^3(x, y, x) \vdash ls^3(y, x, y)$ with only presumable cuts

Outline of Proof

1. We can prove $ls^3(x, y, x) \vdash ls^3(y, x, y)$ with cut

- We can prove $ls^3(x, y, x) \vdash ls^3(y, x, y)$ with cuts
- The cut formula $ls^3(x, x, y) * ls^3(y, y, x)$ is **not presumable** from the conclusion

Outline of Proof

- 2. There is no proof of $ls^3(x, y, x) \vdash ls^3(y, x, y)$ with only presumable cuts
- First, we assume existence of a cyclic proof of $ls^3(x, y, x) \vdash ls^3(y, x, y)$ with only presumable cuts
- Following a particular infinite path

the path has no trace unfolded infinitely many times

• Such an infinite path is not allowed because it does not satisfy the global trace condition

Related Work

- Automated Lemma Synthesis in Symbolic-Heap Separation Logic[Ta+ 2018]
 - Cuts with lemma generated automatically
- Automatic Induction Proofs of Data-Structures in Imperative Programs[Chu+ 2015]
 - Cuts with sequents occurring in proof search

They have no discussed theoretical properties on the provability

Conclusion

Theorem

We can't restrict cuts in CSL_1ID^{ω} to presumable cuts

• Counterexample : $ls^3(x, y, x) \vdash ls^3(y, x, y)$ Another counterexample : $dl(x, y) \vdash dl(y, x)$

• We can prove $dl(x, y) \vdash dl(y, x)$ with the cut formula dl(x, nil) * dl(y, nil)

Future work

- More relaxed restriction for proof search
- Restriction on inductive predicates to achieve (quasi) cut-elimination property

