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Program problem specification
Derivation { reason 1}
expr 1
{ reason 2 }
expr 2

{ reason n }
Implementation.



Non-determinism
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Some sorting algorithms can be more efficient if we are
not over specific about order of items with equal keys.



Relational relational specification

Program > {reason 1}
Derivation expr 1
= {reason 2 }
expr 2
D> {reasonn

functional implementation.

R 2 S : relational inclusion;
whatever S does is allowed by R.



Relational
Program
Derivation

Developed around late 80's - 90's.

| still love it!
"Bizarre, too complex.’

Point-free. Harder to apply usual
techniques such as pattern matching,
Induction on the arguments, etc.

Pointwise notation confusing when
applying a function to a non-deterministic
value.



Monadic Monadic-Spec (X:Xs)
Program > {reason 1}
Derivation expr 1
= {reason 2}
expr 2
D> {reasonn

return (implementation (x:xs)) .

R 2 S: to be defined later!



Monadic
Program
Derivation

Non-determinism represented by monads.

One can apply usual functional program
derivation techniques --- e.g. structural
iInduction on input data.

Possibility of incorporating other effects.



Monad

return ::a — m a

operators
P (>=):ma—@—=>mb)—>mb
return x >=*1t = fXx
monad laws f > return = f

M>=f)>=g =m>=(AX—fX>=Q)



Non-determinism Monad

operators ) ma—ma—-ma
..M a



Non-determinism Monad

operators ) ma—ma—-ma
Z.:ma
monoid (Min)lk = ml(nik)

MId=mM=g1m

idempotence Mmim=m

commutativity Min=nim



Insertion & insert ::a — [a] @ m [a]

Permutation nserty|]  =returnly|
iInsert y (x:xs) = return (y:x:xs) [

(x:) ($) insert y xs




Insertion & insert ::a — [a] = m [a]

Permutation nserty|]  =returnly|
iInsert y (x:xs) = return (y:x:xs) [

(x:) <$) insert y xs

f($ m = m >= (A x = return (f x))



Insertion & insert ::a — [a] = m [a]

Permutation nserty|]  =returnly|
iInsert y (x:xs) = return (y:x:xs) [

(x:) <$) insert y xs

f($ m = m >= (A x = return (f x))

perm :: [a] =& m [a]
perm | | = return | |
perm (X:Xs) = perm xs >= Insert X



Sorting

slowsort xs = perm xs >= filt ordered

filt p X = 1If p X then return x else @
= guard (p X) >> return X

guard b = 1f b then return () else @



Program
Refinement

M1 Cmz2 = (M1 1 M2=my)



Divide &

Conquer Pe™ 1=

perm (X:Xs) =
split xs >= A (ys,zs) —
permys >= A ys' —
perm zs >= A\ zs'—
iIftM2 (#[x]+#) ys' zs'

splits : all the ways to split a list into two.



Deriving
Quicksort

slowsort [1= {[ ]}

slowsort (x:xs) = perm (x:xs) >= filt ordered
=



slowsort (X:xs) =
perm (X:xs) >= filt ordered



slowsort (X:xs) =
split xs >= A (ys,zs) —
permys >= A ys' —
perm zs >= A zs'—
filt ordered (ys' + [X] # zs')



slowsort (X:Xs) =
split xs >= A (ys,zs) —
perm ys >= A ys' -
perm zs >= A zs'—
guard (ordered ys' A ordered zs' A
all (<x) ys' A all (=x) zs')) »
return (ys' + [x] # zs')



slowsort (X:XS) =
split xs >= A (ys,zs) —
guard (all (=x) ys' A all (=x) zs')) »
(perm ys >= filt sorted)>= A ys' —

(perm zs >= filt sorted)>= A zs'—
return (ys' 4+ [X] # zs')



slowsort (X:xs) =
split xs >= A (ys,zs) —
guard (all (<x) ys' A all (=x) zs')) »
slowsort ys >= A ys' —

slowsort zs >= A zs'—
return (ys' 4+ [X] # zs')



slowsort (X:XS) =
split xs >= A (ys,zs) —
guard (all (=x) ys' A all (=x) zs')) »
slowsort ys >= A ys' — D partition x xs

slowsort zs >= A zs'—
return (ys' 4+ [X] # zs')



Quicksort for Lists

slowsort xs 2 return (quicksort xs)

quicksort | | = | |
quicksort (X:Xs) =
let (ys, zs) = partition X Xs
In quicksort ys + | X | #+ quicksort zs



Commuting Guards

Definition: m and n commute If
M>=AX—>PN>=Ay Xy =
N>=Ay—2mMm>=AX—TXy

Theorem: guard commutes with other
terms.



To prove the commutativity we need:

left zero o>=Ff= @

leftdist. (M1 [ Mg) >=1 =
(M1 >= 1) [ (M2 >= 1)

rightzero M >0 =0

rightdistr.  m >= (A X = f1 x [ fo X) =
(M >= f1) 1 (M >= f)



Arrays

types |dX -- Index to a global array
e --type of elements in the array

operators read ;I ldx @ me
write :: ldx > e = m ()



Arrays

types |dX -- Index to a global array
e --type of elements in the array

operators read > ldx @ me
write :: ldx > e = m ()

induced readLlList :: ldx = Nat = m [e]
operators  \yritelist :: ldx = [e] — m ()
swap @ ldx =2 ldx =& m ()



Imperative Quicksort

type igsort :: ldx = Nat =& m ()

specification  WritelList | xs » igsort | (#xs) C
slowsort xs >= writeList |

#xs: length of xs
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Imperative Quicksort

type igsort :: ldx = Nat =& m ()

precondition

specification >> igsort 1 (#XS) C

slowsort xs >= writelList |



Imperative Quicksort

type igsort::ldx = Nat = m ()

precondition

specification >> igsort 1 (#XS) C
slowsort xs >= writelist |

postcondition



Imperative Quicksort

type igsort::ldx = Nat = m ()

precondition code to derive

specification > igsort 1 (#XS)|C
slowsort xs >= writeList |

postcondition



Constructing Imperative Programs

writeList | (ys + zs + [x]) »
79 C

perm zs >= A\ zs' —
writeList | (ys + [X]| #+ zS')

20 212223 |24 | x_
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Constructing Imperative Programs

writeList | (ys + zs + [x]) »
79 C

perm zs >= A\ zs' —
writeList | (ys + [X]| #+ zS')

20 2122123 24| x_

Sannon




Constructing Imperative Programs

writeList | (ys + zs + [x]) »
swap (I + #ys) (I + #ys + #zs) C
perm zs >= A zs' —
writeList i (ys + [X] # zS')




Quicksort for
Arrays

igsort 1 0 = {()}
igsort i n =
read | >= A p —
ipartition p (i+1) (0,0,n-1) >= A (ny,nz) —
swap i (I + ny)
igsort | ny » igsort (I+ny+1) nz



Conclusions

Monad: a good choice as a calculus for
program derivation that involves non-
determinism.

Able to apply familiar techniques --- pattern
matching, induction on structures or on sizes,
etc.

Other effects can be naturally integrated.



Thank you.



