
Shin-Cheng Mu and Tsung-Ju Chiang,
Academia Sinica, Taiwan.

FLOPS 2020.

Deriving Monadic Quicksort
Declarative Pearl:

Monadic
Specification of

Sorting

Monadic
Specification of

Sorting

Functional
Quicksort for

Lists

Monadic
Specification of

Sorting

Functional
Quicksort for

Lists

Monadic
Quicksort for

Arrays

Program
Derivation

 problem specification

= { reason 1 }

 expr 1

= { reason 2 }

 expr 2

 :

= { reason n }

 implementation.

Non-determinism

▽ ❉ ▲△ ✺ ▼ ☆ ✤ ❤

▽ ❉▲△ ✺▼☆ ✤ ❤

△ ❉▼▽ ✤▲☆ ✺ ❤

△ ✺▼☆ ❉▲▽ ✤ ❤

☆ ✤▼▽ ✺▲△ ❉ ❤

:

Some sorting algorithms can be more efficient if we are
not over specific about order of items with equal keys.

Relational
Program
Derivation

 relational specification

⊇ { reason 1 }

 expr 1

= { reason 2 }

 expr 2

 :

⊇ { reason n }

 functional implementation.

R ⊇ S : relational inclusion;

 whatever S does is allowed by R.

Relational
Program
Derivation

Developed around late 80's - 90's.

I still love it!

"Bizarre, too complex."

Point-free. Harder to apply usual
techniques such as pattern matching,
induction on the arguments, etc.

Pointwise notation confusing when
applying a function to a non-deterministic
value.

Monadic
Program
Derivation

 Monadic-Spec (x:xs)

⊇ { reason 1 }

 expr 1

= { reason 2 }

 expr 2

 :

⊇ { reason n }

 return (implementation (x:xs)) .

R ⊇ S : to be defined later!

Monadic
Program
Derivation Non-determinism represented by monads.

One can apply usual functional program
derivation techniques --- e.g. structural
induction on input data.

Possibility of incorporating other effects.

Monad

return :: a → m a

(>>=) :: m a → (a → m b) → m b

return x >>= f = f x

f >>= return = f

(m >>= f) >>= g = m >>= (λ x → f x >>= g)
monad laws

operators

Non-determinism Monad

(⫿) :: m a → m a → m a

∅ :: m a

operators

Non-determinism Monad

(⫿) :: m a → m a → m a

∅ :: m a

(m ⫿ n) ⫿ k = m ⫿ (n ⫿ k)

m ⫿ ∅ = m = ∅ ⫿ m

m ⫿ m = m

m ⫿ n = n ⫿ m

monoid

idempotence

commutativity

operators

Insertion &
Permutation

insert :: a → [a] → m [a]

insert y [] = return [y]

insert y (x:xs) = return (y:x:xs) ⫿

 (x:) ⟨$⟩ insert y xs

Insertion &
Permutation

insert :: a → [a] → m [a]

insert y [] = return [y]

insert y (x:xs) = return (y:x:xs) ⫿

 (x:) ⟨$⟩ insert y xs

f ⟨$⟩ m = m >>= (λ x → return (f x))

Insertion &
Permutation

insert :: a → [a] → m [a]

insert y [] = return [y]

insert y (x:xs) = return (y:x:xs) ⫿

 (x:) ⟨$⟩ insert y xs

perm :: [a] → m [a]

perm [] = return []

perm (x:xs) = perm xs >>= insert x

f ⟨$⟩ m = m >>= (λ x → return (f x))

Sorting

slowsort xs = perm xs >>= filt ordered

filt p x = if p x then return x else ∅

 = guard (p x) >> return x

guard b = if b then return () else ∅

Program
Refinement

m1 ⊆ m2 ≡ (m1 ⫿ m2 = m2)

Divide &
Conquer perm [] = {[]}

perm (x:xs) =

 split xs >>= λ (ys,zs) →

 perm ys >>= λ ys' →

 perm zs >>= λ zs'→

 liftM2 (⧺[x]⧺) ys' zs'

splits : all the ways to split a list into two.

slowsort [] = {[]}

slowsort (x:xs) = perm (x:xs) >>= filt ordered

 = ?

Deriving
Quicksort

slowsort (x:xs) =

 perm (x:xs) >>= filt ordered

slowsort (x:xs) =

 split xs >>= λ (ys,zs) →

 perm ys >>= λ ys' →

 perm zs >>= λ zs'→

 filt ordered (ys' ⧺ [x] ⧺ zs')

slowsort (x:xs) =

 split xs >>= λ (ys,zs) →

 perm ys >>= λ ys' →

 perm zs >>= λ zs'→

 guard (ordered ys' ∧ ordered zs' ∧

 all (≤x) ys' ∧ all (≥x) zs')) ≫

 return (ys' ⧺ [x] ⧺ zs')

slowsort (x:xs) =

 split xs >>= λ (ys,zs) →

 guard (all (≤x) ys' ∧ all (≥x) zs')) ≫

 (perm ys >>= filt sorted)>>= λ ys' →

 (perm zs >>= filt sorted)>>= λ zs'→

 return (ys' ⧺ [x] ⧺ zs')

slowsort (x:xs) =

 split xs >>= λ (ys,zs) →

 guard (all (≤x) ys' ∧ all (≥x) zs')) ≫

 slowsort ys >>= λ ys' →

 slowsort zs >>= λ zs'→

 return (ys' ⧺ [x] ⧺ zs')

slowsort (x:xs) =

 split xs >>= λ (ys,zs) →

 guard (all (≤x) ys' ∧ all (≥x) zs')) ≫

 slowsort ys >>= λ ys' →

 slowsort zs >>= λ zs'→

 return (ys' ⧺ [x] ⧺ zs')

⊇ partition x xs

Quicksort for Lists

slowsort xs ⊇ return (quicksort xs)

quicksort [] = []

quicksort (x:xs) =

 let (ys, zs) = partition x xs

 in quicksort ys ⧺ [x] ⧺ quicksort zs

Commuting Guards

Definition: m and n commute if

 m >>= λ x → n >>= λ y → f x y =

 n >>= λ y → m >>= λ x → f x y

Theorem: guard commutes with other
terms.

∅ >>= f = ∅

(m1 ⫿ m2) >>= f =

 (m1 >>= f) ⫿ (m2 >>= f)

m >> ∅ = ∅

m >>= (λ x → f1 x ⫿ f2 x) =

 (m >>= f1) ⫿ (m >>= f2)

left zero

left distr.

right zero
right distr.

To prove the commutativity we need:

Arrays

read :: Idx → m e

write :: Idx → e → m ()

operators

Idx -- index to a global array

e -- type of elements in the array

types

Arrays

read :: Idx → m e

write :: Idx → e → m ()

operators

readList :: Idx → Nat → m [e]

writeList :: Idx → [e] → m ()

swap :: Idx → Idx → m ()

induced
operators

Idx -- index to a global array

e -- type of elements in the array

types

Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

 slowsort xs >>= writeList i

iqsort :: Idx → Nat → m ()

specification

type

#xs: length of xs

Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

 slowsort xs >>= writeList i

iqsort :: Idx → Nat → m ()

specification

type

Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

 slowsort xs >>= writeList i

iqsort :: Idx → Nat → m ()

specification

type

Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

 slowsort xs >>= writeList i

iqsort :: Idx → Nat → m ()

specification

type

Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

 slowsort xs >>= writeList i

iqsort :: Idx → Nat → m ()

specification

type

precondition

Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

 slowsort xs >>= writeList i

iqsort :: Idx → Nat → m ()

specification

type

precondition

postcondition

Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

 slowsort xs >>= writeList i

iqsort :: Idx → Nat → m ()

specification

type

precondition

postcondition

code to derive

Constructing Imperative Programs

writeList i (ys ⧺ zs ⧺ [x]) ≫

 ?? ⊆

 perm zs >>= λ zs' →

 writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

? ? ? ? ?

Constructing Imperative Programs

writeList i (ys ⧺ zs ⧺ [x]) ≫

 ?? ⊆

 perm zs >>= λ zs' →

 writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

? ? ? ? ?

Constructing Imperative Programs

writeList i (ys ⧺ zs ⧺ [x]) ≫

 ?? ⊆

 perm zs >>= λ zs' →

 writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

? ? ? ? ?

Constructing Imperative Programs

writeList i (ys ⧺ zs ⧺ [x]) ≫

 ?? ⊆

 perm zs >>= λ zs' →

 writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

? ? ? ? ?

writeList i (ys ⧺ zs ⧺ [x]) ≫

 swap (i + #ys) (i + #ys + #zs) ⊆

 perm zs >>= λ zs' →

 writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

z1 z2 z3 z4 z0

Constructing Imperative Programs

Quicksort for
Arrays

iqsort i 0 = {()}

iqsort i n =

 read i >>= λ p →

 ipartition p (i+1) (0,0,n-1) >>= λ (ny,nz) →

 swap i (i + ny)

 iqsort i ny ≫ iqsort (i+ny+1) nz

Conclusions

Monad: a good choice as a calculus for
program derivation that involves non-
determinism. 
 
Able to apply familiar techniques --- pattern
matching, induction on structures or on sizes,
etc. 
 
Other effects can be naturally integrated.

Thank you.

