Declarative Pearl: Deriving Monadic Quicksort

Shin-Cheng Mu and Tsung-Ju Chiang, Academia Sinica, Taiwan.

FLOPS 2020.

Monadic Specification of Sorting

Monadic Specification of Sorting

Functional Quicksort for Lists

Monadic Specification of Sorting

Functional Quicksort for Lists

Monadic Quicksort for Arrays

Program Derivation

problem specification $= \{ reason 1 \}$ expr 1 $= \{ reason 2 \}$ expr 2 $= \{ reason n \}$ implementation.

Non-determinism

not over specific about order of items with equal keys.

Some sorting algorithms can be more efficient if we are

Relational Program Derivation

- \supseteq {reason 1} expr 1 $= \{ reason 2 \}$ expr 2 \supseteq

 $R \supseteq S$: relational inclusion; whatever S does is allowed by R.

relational specification

{ reason n } functional implementation.

Relational Program Derivation

I still love it!

value.

- Developed around late 80's 90's.
- "Bizarre, too complex."
- Point-free. Harder to apply usual techniques such as pattern matching, induction on the arguments, etc.
- Pointwise notation confusing when applying a function to a non-deterministic

Monadic Program Derivation

- \geq {reason 1 } expr 1 $= \{ reason 2 \}$ expr 2 { reason n } \supseteq

Monadic-Spec (x:xs)

return (implementation (x:xs)).

 $R \supseteq S$: to be defined later!

Monadic Program Derivation

induction on input data.

- Non-determinism represented by monads.
- One can apply usual functional program derivation techniques --- e.g. structural
- Possibility of incorporating other effects.

operators

return :: $a \rightarrow m a$ (\gg) : m a \rightarrow (a \rightarrow m b) \rightarrow m b

monad laws

return $x \gg f = f x$ $f \gg return = f$ $(m \gg f) \gg g = m \gg (\lambda x \rightarrow f x \gg g)$

Non-determinism Monad

operators

(□) :: m a Ø :: m a

(I) $:: m a \rightarrow m a \rightarrow m a$

Non-determinism Monad

(I) $:: m a \rightarrow m a \rightarrow m a$

$(m \ \ n) \ \ k = m \ \ (n \ \ k)$ $m \ \ \emptyset = m = \emptyset \ \ m$ $m \ \ m \ m = m$ $m \ \ n = n \ \ m$

Insertion & Permutation

insert :: $a \rightarrow [a] \rightarrow m [a]$ insert y [] = return [y] insert y (x:xs) = return (y:x:xs) (x:) \langle \$ insert y xs

Insertion & Permutation

 $f \langle \$ \rangle m = m \gg (\lambda x \rightarrow return (f x))$

insert :: $a \rightarrow [a] \rightarrow m [a]$ insert y[] = return [y]insert y (x:xs) = return (y:x:xs) (x:) (\$) insert y xs

Insertion & Permutation

insert :: $a \rightarrow [a] \rightarrow m [a]$ insert y [] = return [y] insert y (x:xs) = return (y:x:xs) (x:) (\$) insert y xs

$f \langle \$ \rangle m = m \gg (\lambda x \rightarrow return (f x))$

perm :: $[a] \rightarrow m [a]$ perm[] = return[]perm (x:xs) = perm xs \gg insert x

Sorting

slowsort xs = perm xs \gg filt ordered

filt p x = if p x then return x else \emptyset = guard (p x) >> return x

guard b = if b then return () else \emptyset

Program Refinement

$\mathbf{m}_1 \subseteq \mathbf{m}_2 \equiv (\mathbf{m}_1 \ \mathbb{I} \ \mathbf{m}_2 = \mathbf{m}_2)$

Divide & Conquer

perm [] = {[]} perm(x:xs) =

splits : all the ways to split a list into two.

split xs $\gg \lambda$ (ys,zs) \rightarrow perm ys $\gg \lambda$ ys' \rightarrow perm zs $\gg \lambda$ zs' \rightarrow liftM2 (#[x]#) ys' zs'

Deriving Quicksort

slowsort (x:xs) = perm (x:xs) >>= filt ordered

slowsort (x:xs) = split xs $\gg \lambda$ (ys,zs) \rightarrow perm ys $\gg \lambda$ ys' \rightarrow perm zs $\gg \lambda$ zs' \rightarrow filt ordered (ys' + [x] + zs')

slowsort (x:xs) = split xs $\gg \lambda$ (ys,zs) \rightarrow perm ys $\gg \lambda$ ys' \rightarrow perm zs \gg λ zs' \rightarrow return (ys' # [x] # zs')

guard (ordered ys' ^ ordered zs' all ($\leq x$) ys' \wedge all ($\geq x$) zs')) >>

slowsort (x:xs) = split xs $\gg \lambda$ (ys,zs) \rightarrow guard (all (\leq x) ys' \wedge all (\geq x) zs')) \gg (perm ys $\gg =$ filt sorted) $\gg = \lambda$ ys' \rightarrow (perm zs $\gg =$ filt sorted) $\gg = \lambda$ zs' \rightarrow return (ys' + [x] + zs')

slowsort (x:xs) = split xs $\gg \lambda$ (ys,zs) \rightarrow slowsort ys $\gg \lambda$ ys' \rightarrow slowsort zs $\gg \lambda$ zs' \rightarrow return (ys' # [x] # zs')

guard (all ($\leq x$) ys' \land all ($\geq x$) zs')) \gg

slowsort (x:xs) = split xs $\gg \lambda$ (ys,zs) \rightarrow slowsort ys $\gg \lambda$ ys' \rightarrow slowsort zs $\gg \lambda$ zs' \rightarrow return (ys' # [x] # zs')

guard (all ($\leq x$) ys' \land all ($\geq x$) zs')) >> ⊇ partition x xs

Quicksort for Lists

slowsort xs \supseteq return (quicksort xs)

quicksort[] = []quicksort (x:xs) = **let** (ys, zs) = partition x xs in quicksort ys # [x] # quicksort zs

Commuting Guards

Definition: m and n commute if $m \gg \lambda x \rightarrow n \gg \lambda y \rightarrow f x y = n \gg \lambda y \rightarrow m \gg \lambda x \rightarrow f x y$

Theorem: guard of terms.

Theorem: guard commutes with other

To prove the commutativity we need:

$(m_1 \gg f) [(m_2 \gg f)]$ $m \gg (\lambda x \rightarrow f_1 x [f_2 x]) =$

 $(m \gg f_1) [(m \gg f_2)]$

- Idx -- index to a global array types e -- type of elements in the array

 - read :: $Idx \rightarrow me$ write :: $Idx \rightarrow e \rightarrow m()$
- operators

- ldx -- index to a global array types e -- type of elements in the array
- read :: $Idx \rightarrow me$ operators

 - readList :: $Idx \rightarrow Nat \rightarrow m[e]$ writeList :: $Idx \rightarrow [e] \rightarrow m()$ $:: Idx \rightarrow Idx \rightarrow m()$ swap

induced operators write :: $Idx \rightarrow e \rightarrow m()$

type

specification

#xs: length of xs

iqsort :: $Idx \rightarrow Nat \rightarrow m()$

writeList i xs ≫ iqsort i (#xs) ⊆ slowsort xs \gg writeList i

type

writeList i xs ≫ iqsort i (#xs) ⊆ specification slowsort xs >>= writeList i

type

writeList i xs ≫ iqsort i (#xs) ⊆ specification slowsort xs >>= writeList i

type

writeList i xs ≫ iqsort i (#xs) ⊆ specification slowsort xs >>= writeList i

specification

precondition

iqsort :: $Idx \rightarrow Nat \rightarrow m()$

writeList i xs)≫ iqsort i (#xs) ⊆ slowsort xs >>= writeList i

precondition

specification

iqsort :: $Idx \rightarrow Nat \rightarrow m()$

writeList i xs ≫ iqsort i (#xs) ⊆ slowsort xs >>= writeList i

postcondition

precondition code to derive writeList i xs ≫ iqsort i (#xs) ⊆ slowsort xs >>= writeList i postcondition

specification

writeList i (ys # zs # [x]) ≫ **??** C perm zs \gg λ zs' \rightarrow writeList i (ys # [x] # zs')

writeList i (ys ⋕ zs ⋕ [x]) ≫ ?? ⊂ perm zs \gg λ zs' \rightarrow writeList i (ys # [x] # zs')

writeList i (ys ⋕ zs ⋕ [x]) ≫ **??** C perm zs \gg λ zs' \rightarrow writeList i (ys # [x] # zs')

writeList i (ys ⋕ zs ⋕ [x]) ≫ **??** C perm zs \gg λ zs' \rightarrow writeList i (ys # [x] # zs')

writeList i (ys + zs + [x]) ≫ swap (i + #ys) (i + #ys + #zs) ⊆ perm zs \gg λ zs' \rightarrow writeList i (ys # [x] # zs')

Quicksort for Arrays

iqsort i $0 = \{()\}$ iqsort i n = read i $\gg \lambda p \rightarrow$ swap i (i + ny) iqsort i ny » iqsort (i+ny+1) nz

ipartition p (i+1) (0,0,n-1) $\gg \lambda$ (ny,nz) \rightarrow

Conclusions

Monad: a good choice as a calculus for program derivation that involves non-determinism.

Able to apply familiar techniques --- pattern matching, induction on structures or on sizes, etc.

Other effects can be naturally integrated.

Thank you.