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Program 
Derivation

    problem specification

=    { reason 1 }

    expr 1

=    { reason 2 }

    expr 2

       :

=    { reason n }

    implementation.



Non-determinism

▽ ❉ ▲△ ✺ ▼ ☆ ✤ ❤

▽ ❉▲△ ✺▼☆ ✤ ❤

△ ❉▼▽ ✤▲☆ ✺ ❤

△ ✺▼☆ ❉▲▽ ✤ ❤

☆ ✤▼▽ ✺▲△ ❉ ❤

:

Some sorting algorithms can be more efficient if we are 
not over specific about order of items with equal keys.



Relational 
Program 
Derivation

    relational specification

⊇    { reason 1 }

    expr 1

=    { reason 2 }

    expr 2

       :

⊇    { reason n }

    functional implementation.

R ⊇ S : relational inclusion;

            whatever S does is allowed by R.



Relational 
Program 
Derivation

Developed around late 80's - 90's.


I still love it!


"Bizarre, too complex."


Point-free. Harder to apply usual 
techniques such as pattern matching, 
induction on the arguments, etc.


Pointwise notation confusing when 
applying a function to a non-deterministic 
value.



Monadic 
Program 
Derivation

    Monadic-Spec (x:xs)

⊇    { reason 1 }

    expr 1

=    { reason 2 }

    expr 2

       :

⊇    { reason n }

    return (implementation (x:xs)) .

R ⊇ S : to be defined later!



Monadic 
Program 
Derivation Non-determinism represented by monads.


One can apply usual functional program 
derivation techniques --- e.g. structural 
induction on input data.


Possibility of incorporating other effects.



Monad

return :: a → m a

(>>=) :: m a → (a → m b) → m b

return x >>= f   =   f x

f >>= return  =  f


(m >>= f) >>= g  = m >>= (λ x → f x >>= g)
monad laws

operators



Non-determinism Monad

(⫿)  :: m a → m a → m a

∅ :: m a

operators



Non-determinism Monad

(⫿)  :: m a → m a → m a

∅ :: m a

(m ⫿ n) ⫿ k  =  m ⫿ (n ⫿ k)

m ⫿ ∅ = m = ∅ ⫿ m


m ⫿ m = m

m ⫿ n = n ⫿ m

monoid

idempotence

commutativity

operators



Insertion & 
Permutation

insert :: a → [a] → m [a]

insert y [ ]      = return [y]

insert y (x:xs) = return (y:x:xs) ⫿

           (x:) ⟨$⟩ insert y xs
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Insertion & 
Permutation

insert :: a → [a] → m [a]

insert y [ ]      = return [y]

insert y (x:xs) = return (y:x:xs) ⫿

           (x:) ⟨$⟩ insert y xs

perm :: [a] → m [a]

perm [ ]      = return [ ]

perm (x:xs) = perm xs >>=  insert x

f ⟨$⟩ m  =  m >>= (λ x → return (f x))



Sorting

slowsort xs = perm xs >>= filt ordered 

filt p x = if p x then return x else ∅

           = guard (p x) >> return x

guard b = if b then return ( ) else ∅



Program 
Refinement

m1 ⊆ m2  ≡  (m1 ⫿ m2 = m2)



Divide & 
Conquer perm [ ] = {[ ]}


perm (x:xs) = 

      split xs >>= λ (ys,zs) →

      perm ys >>= λ ys' → 

      perm zs >>= λ zs'→

      liftM2 (⧺[x]⧺) ys' zs'

splits : all the ways to split a list into two.



slowsort [ ] = {[ ]}

slowsort (x:xs) = perm (x:xs) >>= filt ordered 

                        = ?

Deriving 
Quicksort



slowsort (x:xs) =

    perm (x:xs) >>= filt ordered 



slowsort (x:xs) =

    split xs >>= λ (ys,zs) →

    perm ys >>= λ ys' → 

    perm zs >>= λ zs'→

    filt ordered (ys' ⧺ [x] ⧺ zs')



slowsort (x:xs) =

    split xs >>= λ (ys,zs) →

    perm ys >>= λ ys' → 

    perm zs >>= λ zs'→

    guard (ordered ys' ∧ ordered zs' ∧

             all (≤x) ys' ∧ all (≥x) zs')) ≫

    return (ys' ⧺ [x] ⧺ zs')



slowsort (x:xs) =

    split xs >>= λ (ys,zs) →

    guard (all (≤x) ys' ∧ all (≥x) zs')) ≫

    (perm ys >>= filt sorted)>>= λ ys' → 

    (perm zs >>= filt sorted)>>= λ zs'→

    return (ys' ⧺ [x] ⧺ zs')



slowsort (x:xs) =

    split xs >>= λ (ys,zs) →

    guard (all (≤x) ys' ∧ all (≥x) zs')) ≫

    slowsort ys >>= λ ys' → 

    slowsort zs >>= λ zs'→

    return (ys' ⧺ [x] ⧺ zs')



slowsort (x:xs) =

    split xs >>= λ (ys,zs) →

    guard (all (≤x) ys' ∧ all (≥x) zs')) ≫

    slowsort ys >>= λ ys' → 

    slowsort zs >>= λ zs'→

    return (ys' ⧺ [x] ⧺ zs')

⊇ partition x xs



Quicksort for Lists

slowsort xs ⊇ return (quicksort xs)


quicksort [ ]      = [ ]

quicksort (x:xs) = 

   let (ys, zs) = partition x xs 

   in quicksort ys ⧺ [ x ] ⧺ quicksort zs



Commuting Guards

Definition: m and n commute if

  m >>= λ x → n >>= λ y → f x y   =

    n >>= λ y → m >>= λ x → f x y

Theorem: guard commutes with other 
terms.



∅ >>= f =  ∅

(m1 ⫿ m2) >>= f  =  

    (m1 >>= f) ⫿ (m2 >>= f)

m >> ∅ = ∅ 

m >>= (λ x → f1 x ⫿ f2 x) = 

   (m >>= f1) ⫿ (m >>= f2)

left zero

left distr.

right zero
right distr.

To prove the commutativity we need:



Arrays

read :: Idx → m e

write :: Idx → e → m ( )

operators

Idx -- index to a global array

e    -- type of elements in the array

types



Arrays

read :: Idx → m e

write :: Idx → e → m ( )

operators

readList :: Idx → Nat → m [e]

writeList :: Idx → [e]  → m ( )

swap      :: Idx → Idx → m ( )

induced 
operators

Idx -- index to a global array

e    -- type of elements in the array

types



Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

   slowsort xs >>= writeList i


iqsort :: Idx → Nat → m ( )

specification

type

#xs: length of xs
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Imperative Quicksort

writeList i xs ≫ iqsort i (#xs) ⊆

   slowsort xs >>= writeList i


iqsort :: Idx → Nat → m ( )

specification

type

precondition

postcondition

code to derive



Constructing Imperative Programs

writeList i (ys ⧺ zs ⧺ [x]) ≫ 

       ?? ⊆

  perm zs >>= λ zs' →

     writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

? ? ? ? ?
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Constructing Imperative Programs

writeList i (ys ⧺ zs ⧺ [x]) ≫ 

       ?? ⊆

  perm zs >>= λ zs' →

     writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

? ? ? ? ?



writeList i (ys ⧺ zs ⧺ [x]) ≫

   swap (i + #ys) (i + #ys + #zs)  ⊆

  perm zs >>= λ zs' →

     writeList i (ys ⧺ [x] ⧺ zs')

ys z0 x

ys x

z1 z2 z3 z4

z1 z2 z3 z4 z0

Constructing Imperative Programs



Quicksort for 
Arrays

iqsort i 0 = {( )}

iqsort i n = 

    read i >>= λ p →

    ipartition p (i+1) (0,0,n-1) >>= λ (ny,nz) →

    swap i (i + ny)

    iqsort i ny ≫ iqsort (i+ny+1) nz



Conclusions

Monad: a good choice as a calculus for 
program derivation that involves non-
determinism. 
 
Able to apply familiar techniques --- pattern 
matching, induction on structures or on sizes, 
etc. 
 
Other effects can be naturally integrated.




Thank you.


