Deriving Monadic Quicksort

Shin-Cheng Mu and Tsung-Ju Chiang,
Academia Sinica, Taiwan.

FLOPS 2020.



Monadic
Specification of
Sorting




Monadic
Specification of
Sorting

Functional
Quicksort for
Lists



Monadic
Specification of
Sorting

Functional Monadic
Quicksort for Quicksort for
Lists Arrays



Program problem specification
Derivation { reason 1}
expr 1
{ reason 2 }
expr 2

{ reason n }
Implementation.



Non-determinism

EEIEI0
EEIEI0
EEIEI0
o Ee

Some sorting algorithms can be more efficient if we are
not over specific about order of items with equal keys.



Relational relational specification

Program > {reason 1}
Derivation expr 1
= {reason 2 }
expr 2
D> {reasonn

functional implementation.

R 2 S : relational inclusion;
whatever S does is allowed by R.



Relational
Program
Derivation

Developed around late 80's - 90's.

| still love it!
"Bizarre, too complex.’

Point-free. Harder to apply usual
techniques such as pattern matching,
Induction on the arguments, etc.

Pointwise notation confusing when
applying a function to a non-deterministic
value.



Monadic Monadic-Spec (X:Xs)
Program > {reason 1}
Derivation expr 1
= {reason 2}
expr 2
D> {reasonn

return (implementation (x:xs)) .

R 2 S: to be defined later!



Monadic
Program
Derivation

Non-determinism represented by monads.

One can apply usual functional program
derivation techniques --- e.g. structural
iInduction on input data.

Possibility of incorporating other effects.



Monad

return ::a — m a

operators
P (>=):ma—@—=>mb)—>mb
return x >=*1t = fXx
monad laws f > return = f

M>=f)>=g =m>=(AX—fX>=Q)



Non-determinism Monad

operators ) ma—ma—-ma
..M a



Non-determinism Monad

operators ) ma—ma—-ma
Z.:ma
monoid (Min)lk = ml(nik)

MId=mM=g1m

idempotence Mmim=m

commutativity Min=nim



Insertion & insert ::a — [a] @ m [a]

Permutation nserty|]  =returnly|
iInsert y (x:xs) = return (y:x:xs) [

(x:) ($) insert y xs




Insertion & insert ::a — [a] = m [a]

Permutation nserty|]  =returnly|
iInsert y (x:xs) = return (y:x:xs) [

(x:) <$) insert y xs

f($ m = m >= (A x = return (f x))



Insertion & insert ::a — [a] = m [a]

Permutation nserty|]  =returnly|
iInsert y (x:xs) = return (y:x:xs) [

(x:) <$) insert y xs

f($ m = m >= (A x = return (f x))

perm :: [a] =& m [a]
perm | | = return | |
perm (X:Xs) = perm xs >= Insert X



Sorting

slowsort xs = perm xs >= filt ordered

filt p X = 1If p X then return x else @
= guard (p X) >> return X

guard b = 1f b then return () else @



Program
Refinement

M1 Cmz2 = (M1 1 M2=my)



Divide &

Conquer Pe™ 1=

perm (X:Xs) =
split xs >= A (ys,zs) —
permys >= A ys' —
perm zs >= A\ zs'—
iIftM2 (#[x]+#) ys' zs'

splits : all the ways to split a list into two.



Deriving
Quicksort

slowsort [1= {[ ]}

slowsort (x:xs) = perm (x:xs) >= filt ordered
=



slowsort (X:xs) =
perm (X:xs) >= filt ordered



slowsort (X:xs) =
split xs >= A (ys,zs) —
permys >= A ys' —
perm zs >= A zs'—
filt ordered (ys' + [X] # zs')



slowsort (X:Xs) =
split xs >= A (ys,zs) —
perm ys >= A ys' -
perm zs >= A zs'—
guard (ordered ys' A ordered zs' A
all (<x) ys' A all (=x) zs')) »
return (ys' + [x] # zs')



slowsort (X:XS) =
split xs >= A (ys,zs) —
guard (all (=x) ys' A all (=x) zs')) »
(perm ys >= filt sorted)>= A ys' —

(perm zs >= filt sorted)>= A zs'—
return (ys' 4+ [X] # zs')



slowsort (X:xs) =
split xs >= A (ys,zs) —
guard (all (<x) ys' A all (=x) zs')) »
slowsort ys >= A ys' —

slowsort zs >= A zs'—
return (ys' 4+ [X] # zs')



slowsort (X:XS) =
split xs >= A (ys,zs) —
guard (all (=x) ys' A all (=x) zs')) »
slowsort ys >= A ys' — D partition x xs

slowsort zs >= A zs'—
return (ys' 4+ [X] # zs')



Quicksort for Lists

slowsort xs 2 return (quicksort xs)

quicksort | | = | |
quicksort (X:Xs) =
let (ys, zs) = partition X Xs
In quicksort ys + | X | #+ quicksort zs



Commuting Guards

Definition: m and n commute If
M>=AX—>PN>=Ay Xy =
N>=Ay—2mMm>=AX—TXy

Theorem: guard commutes with other
terms.



To prove the commutativity we need:

left zero o>=Ff= @

leftdist. (M1 [ Mg) >=1 =
(M1 >= 1) [ (M2 >= 1)

rightzero M >0 =0

rightdistr.  m >= (A X = f1 x [ fo X) =
(M >= f1) 1 (M >= f)



Arrays

types |dX -- Index to a global array
e --type of elements in the array

operators read ;I ldx @ me
write :: ldx > e = m ()



Arrays

types |dX -- Index to a global array
e --type of elements in the array

operators read > ldx @ me
write :: ldx > e = m ()

induced readLlList :: ldx = Nat = m [e]
operators  \yritelist :: ldx = [e] — m ()
swap @ ldx =2 ldx =& m ()



Imperative Quicksort

type igsort :: ldx = Nat =& m ()

specification  WritelList | xs » igsort | (#xs) C
slowsort xs >= writeList |

#xs: length of xs



Imperative Quicksort

type igsort :: ldx = Nat =& m ()

specification  WritelList | xs » igsort | (#xs) C
slowsort xs >= writeList |



Imperative Quicksort

type igsort :: ldx = Nat =& m ()

specification  WritelList | xs » igsort | (#xs) C
slowsort xs >= writeList |



Imperative Quicksort

type igsort :: ldx = Nat =& m ()

specification  WritelList | xs » igsort | (#xs) C
slowsort xs >= writeList |



Imperative Quicksort

type igsort :: ldx = Nat =& m ()

precondition

specification >> igsort 1 (#XS) C

slowsort xs >= writelList |



Imperative Quicksort

type igsort::ldx = Nat = m ()

precondition

specification >> igsort 1 (#XS) C
slowsort xs >= writelist |

postcondition



Imperative Quicksort

type igsort::ldx = Nat = m ()

precondition code to derive

specification > igsort 1 (#XS)|C
slowsort xs >= writeList |

postcondition



Constructing Imperative Programs

writeList | (ys + zs + [x]) »
79 C

perm zs >= A\ zs' —
writeList | (ys + [X]| #+ zS')

20 212223 |24 | x_




Constructing Imperative Programs

writeList | (ys + zs + [x]) »
79 C

perm zs >= A\ zs' —
writeList | (ys + [X]| #+ zS')

20 212223 |24 | x_




Constructing Imperative Programs

writeList | (ys + zs + [x]) »
79 C

perm zs >= A\ zs' —
writeList | (ys + [X]| #+ zS')

20 2122123 24| x_




Constructing Imperative Programs

writeList | (ys + zs + [x]) »
79 C

perm zs >= A\ zs' —
writeList | (ys + [X]| #+ zS')

20 2122123 24| x_

Sannon




Constructing Imperative Programs

writeList | (ys + zs + [x]) »
swap (I + #ys) (I + #ys + #zs) C
perm zs >= A zs' —
writeList i (ys + [X] # zS')




Quicksort for
Arrays

igsort 1 0 = {()}
igsort i n =
read | >= A p —
ipartition p (i+1) (0,0,n-1) >= A (ny,nz) —
swap i (I + ny)
igsort | ny » igsort (I+ny+1) nz



Conclusions

Monad: a good choice as a calculus for
program derivation that involves non-
determinism.

Able to apply familiar techniques --- pattern
matching, induction on structures or on sizes,
etc.

Other effects can be naturally integrated.



Thank you.



